
MATH 100:701 – 2018W
Recitation Notes for Oct. 15th

Ahmet Alperen Bulut

October 15, 2018

1 Limits of Functions
Let f : R→ R be a function, and let either a ∈ R be a real number or let a = ±∞. Suppose
we are trying to find limx→a f(x). The only possibilities are:

• limx→a f(x) exists, i.e., limx→a f(x) = L for some real number L. (So, L cannot be
±∞.)
Examples. limx→5 x = 5, limx→∞ 1/x = 0, limx→0+ x/|x| = 1, . . .

• limx→a f(x) does not exist. In this case there are two possibilities:

B limx→a f(x) =∞ or limx→a f(x) = −∞.
Examples. limx→0 1/x2 = +∞, limx→0− 1/x = −∞, limx→−∞ x

4 = +∞, . . .
B limx→a f(x) simply does not exist and is not ±∞.

Examples. limx→0 sin(1/x), limx→∞ cos(x), limx→0 x/|x|, . . .

Definition 1. If limx→∞ f(x) = L or limx→−∞ = L for some real number L; then we say
that f has a horizontal asymptote y = L.

Definition 2. If limx→a± f(x) = ±∞; then we say that f has a vertical asymptote
x = a.

Theorem 3. For a function f : R → R and a real number a ∈ R, limx→a f(x) = L if and
only if

lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

2 Sequences
Definition 4. A sequence (an)∞n=1 is called bounded if and only if there exists an M > 0
such that |an| ≤M for all n ∈ N.

1



Definition 5. A sequence (an)∞n=1 is called monotonically nondecreasing if and only if

(an+1 − an) ≥ 0 for all n ∈ N.

Similarly, it is called monotonically nonincreasing if and only if

(an+1 − an) ≤ 0 for all n ∈ N.

A sequence which is either monotonically nondecreasing or monotonically nonincreasing is
simply called monotonic or monotone.

Theorem 6 (Bounded Monotone Convergence Theorem (MBCT)). If a sequence
of real numbers, (an)∞n=1, is bounded and monotone; then limn→∞ an exists. (Hence, is a real
number.)

3 Series and Tests
Definition 7. Let (an)∞n=1 be a sequence of real numbers. A series is a formal sum of a
sequence, which is denoted by

∞∑
n=1

an = a1 + a2 + a3 + . . . .

We say that the series ∑∞n=1 an converges if and only if the limit of the sequence of
partial sums,

sn = a1 + a2 + · · ·+ an =
n∑
j=1

aj,

exists. (And hence is a real number.) In other words, we define

∞∑
n=1

an = lim
n→∞

sn = lim
n→∞

 n∑
j=1

aj

 .
A series which is not convergent is called divergent.

Theorem 8 (Divergence Test). If a series ∑∞
n=1 an converges; then limn→∞ an = 0.

Hence, if limn→∞ an is not 0 or it does not exist; then ∑∞
n=1 an diverges.

Remark. If limn→∞ an = 0, this does not imply anything useful. Consider the two series,∑∞
n=1 1/n and ∑∞

n=1 1/n2. For both, we have limn→∞ 1/n = 0 and limn→∞ 1/n2 = 0, but∑∞
n=1 1/n diverges while ∑∞n=1 1/n2 converges. (See Section 4.)

Theorem 9 (Comparison Test). Let ∑∞n=1 an and ∑∞n=1 bn be two series with all nonneg-
ative terms, i.e., an, bn ≥ 0 for all n ∈ N.

(a) If an ≤ bn for all n ∈ N and if ∑∞n=1 bn converges; then ∑∞
n=1 an converges as well.

(b) If an ≥ bn for all n ∈ N and if ∑∞n=1 bn diverges; then ∑∞
n=1 an diverges as well.
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Remark. One can informally think of this test as follows. Since we are assuming we have
a nonnegative sequence an, the sequence of partial sums, sn = ∑n

j=1 aj, is a monotone
nondecreasing sequence. Therefore, by BMCT (Theorem 6), ∑∞n=1 an = limn→∞ sn either
converges or diverges to +∞. This is true for ∑∞n=1 bn as well.

Then, part (a) actually says: “if ∑∞n=1 an ≤
∑∞
n=1 bn = L; then ∑∞n=1 an is less than or

equal to a real number, L. Hence, ∑∞n=1 an must converge (i.e., be a real number).”
Similarly, what part (b) says is “if ∑∞n=1 an ≥

∑∞
n=1 bn = +∞; then ∑∞n=1 an is greater

than or equal to +∞; hence, ∑∞n=1 an must diverge to +∞.”

Theorem 10 (Limit Comparison Test). Let ∑∞n=1 an and ∑∞n=1 bn be two series with all
positive terms, i.e., an, bn > 0 for all n ∈ N. If

lim
n→∞

(
an
bn

)
= L > 0;

then either both series converge or both series diverge.

Remark. This test can be interpreted as “for sufficiently large n > N0, an is really close to
L × bn; so forgetting about the first finitely-many terms, we see, ∑∞n=N0 an is more or less
equal to L×

(∑∞
n=N0 bn

)
. Thus, either both series must converge or both must diverge.”

Remark. Note that if limn→∞(an/bn) = 0, we cannot conclude anything useful. To see this
consider an = 1/n2, bn = 1/n, and cn = 1/

√
n. We have limn→∞(an/bn) = limn→∞(1/n) =

0, but ∑∞n=1 an converges while ∑∞n=1 bn diverges. On the other hand, we have, again,
limn→∞(bn/cn) = limn→∞(1/

√
n) = 0, but both ∑∞

n=1 bn and ∑∞
n=1 cn diverge. (See Sec-

tion 4.)

Theorem 11 (Ratio Test). Let ∑∞n=1 an be a series with all positive terms.

(a) If limn→∞
an+1
an

= L < 1; then ∑∞
n=1 an converges.

(b) If limn→∞
an+1
an

= L > 1; then ∑∞
n=1 an diverges.

Remark. This test can be interpreted as follows. If limn→∞
an+1
an

= L; then for sufficiently
large n ≥ N0, an+1 is more or less equal to L × an. Hence, ∑∞n=N0 an is really close to∑∞
n=N0 aN0L

n−N0 , which is a geometric series. This series converges if L < 1, and diverges if
L > 1. (See Section 4.)
Remark. If limn→∞

an+1
an

= 1; then the test cannot say anything. To see this consider an =
1/n and bn = 1/n2. For both, we have limn→∞(an+1/an) = limn→∞((n + 1)/n) = 1 and
limn→∞(bn+1/bn) = limn→∞((n + 1)2/n2) = 1. But ∑∞n=1 1/n2 converges while ∑∞n=1 1/n
diverges. (See Section 4.)

Definition 12. A series ∑∞n=1 an is called to converge absolutely if and only if ∑∞n=1|an|
converges. The series is called to converge conditionally if and only if ∑∞n=1 an converges
but ∑∞n=1|an| diverges.

Theorem 13. If a series converges absolutely; then it converges.
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Theorem 14 (Alternating Series Test). Let ∑∞n=1(−1)nan (or ∑∞
n=1(−1)n−1an) be a

series such that

• an ≥ 0 for all n ∈ N;

• an+1 ≤ an for all n ∈ N; and

• limn→∞ an = 0.

Then, ∑∞n=1(−1)nan (or ∑∞n=1(−1)n−1an) converges.

4 Some Series to Keep in Mind
• Let r ∈ R be a real number. The series ∑∞n=1 r

n is called a geometric series, and

∞∑
n=1

rn



converges to r
1−r , if |r| < 1;

diverges to +∞, if r > 1;
diverges, if r < −1;
diverges to +∞, if r = 1;
diverges, if r = −1.

• Let p > 0 be a real number. Then;
∞∑
n=1

1
np

converges, if p > 1;
diverges, if p ≤ 1.

5 Some Limits to Keep in Mind
• Factorials grow much faster than exponentials:

lim
n→∞

en

n! = 0.

• Factorials grow much faster than polynomials:

lim
n→∞

np

n! = 0 for any p ∈ N.

• Exponentials grow much faster than polynomials:

lim
n→∞

np

en
= 0 for any p ∈ N.

• Logarithm grows much slower than anything of the form nα for some α > 0:

lim
n→∞

ln(n)
nα

= 0 for any α > 0.
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6 Problems
Problem 1. Calculate the following limits.

(a) limx→∞(
√
x2 + 1− x)

(b) limx→∞(
√
x2 + x− x)

Problem 2. Let ∑∞n=1 an be a convergent series. Prove that the sequence (bn)∞n=1, defined
by

bn =
∞∑
j=n

aj,

converges to 0. In other words, show that limn→∞ bn = 0.

Problem 3. (a) Explain what goes wrong with the following (False!) proof of the (False!)
statement “if ∑∞n=1 an is a convergent series; then ∑∞n=1(an)2 converges as well.”

1. Since∑∞n=1 an is convergent, we know by the Divergence Test that limn→∞ an = 0.
2. So, for sufficiently large n ≥ N0, an ≤ 1.
3. Thus, (an)2 ≤ an for all n ≥ N0.
4. Since, by our hypothesis, ∑∞n=N0 an converges; by Comparison Test, ∑∞n=N0(an)2

converges as well.
5. Hence,∑∞n=1(an)2 = ∑N0−1

n=1 (an)2+∑∞n=N0(an)2 converges, which is what we wanted
to show.

Remark. There are more than one. Find all the mistakes.

(b) Show that the above statement is false by providing a counterexample. In other words,
find a sequence (an)∞n=1 such that

∞∑
n=1

an converges, but
∞∑
n=1

(an)2 diverges.

(c) What do we have to additionally assume to make sure that above statement and the
proof is correct?

(d) Suppose that ∑∞n=1(an)2 is a convergent series. Does this imply that ∑∞n=1 an is con-
vergent as well? Prove or give a counterexample.

Problem 4. Suppose you have infinitely-many cube-shaped boxes, numbered from 1 to
infinity, such that the nth box has side length n−5/12 meters. Can you fill all these boxes
with paint? Can you paint all the inside surfaces of all of these boxes?
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Problem 5. Determine if the following series converge absolutely, converge conditionally, or
diverge.

(a)
∞∑
n=1

nn

n!

(b)
∞∑
n=1

(−1)n (n+ 4)!
n! 2n

(c)
∞∑
n=1

(
(n+ 2)n

4n2

)

(d)
∞∑
n=1

(−1)n
sin

(
1 + 1

2n

)
√
n
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