
MATH 100:701 – 2018W
Solutions for the Problems in Recitation Notes for

Oct. 15th

Ahmet Alperen Bulut

October 15, 2018

Problem 1. Calculate the following limits.

(a) limx→∞(
√
x2 + 1− x)

(b) limx→∞(
√
x2 + x− x)

Solution. (a) Multiplying the numerator and the denominator (which is one) with the
conjugate of the above expression, we get,

lim
x→∞

(
√
x2 + 1− x) = lim

x→∞

(
√
x2 + 1− x)(

√
x2 + 1 + x)

(
√
x2 + 1 + x)

= lim
x→∞

x2 + 1− x2
√
x2 + 1 + x

= lim
x→∞

1√
x2 + 1 + x

= 0,

since the denominator gets arbitrarily large as x tends to +∞.

(b) Similarly, we this time get,

lim
x→∞

(
√
x2 + x− x) = lim

x→∞

(
√
x2 + x− x)(

√
x2 + x+ x)

(
√
x2 + x+ x)

= lim
x→∞

x2 + x− x2
√
x2 + 1 + x

= lim
x→∞

x√
x2 + 1 + x

= lim
x→∞

x/x

(
√
x2 + 1 + x)/x

= lim
x→∞

1
(
√

(x2 + 1)/x2 + x/x)
= lim

x→∞

1
(
√

(1 + 1/x2) + 1)

= 1√
1 + 0 + 1

= 1
2 . �

Problem 2. Let ∑∞n=1 an be a convergent series. Prove that the sequence (bn)∞n=1, defined
by

bn =
∞∑
j=n

aj,

converges to 0. In other words, show that limn→∞ bn = 0.
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Solution. Let, as usual, sn = ∑n
j=1 aj = a1 + a2 + · · · + an be the sequence of partial sums

of (an)∞n=1. As the series ∑∞n=1 an converges, we know that limn→∞ sn exists and is a real
number, say L ∈ R. Observe that bn converges for every n ∈ N; since for n ≥ 2,

bn =
∞∑
j=n

aj =
 ∞∑
j=1

aj

−
n−1∑
j=1

aj

 = L−

n−1∑
j=1

aj

 .
Taking limit, we see that,

lim
n→∞

bn = lim
n→∞

L− n−1∑
j=1

aj

 = lim
n→∞

(L− sn−1) = L− lim
n→∞

sn−1 = L− lim
n→∞

sn = L− L = 0.

�

Problem 3. (a) Explain what goes wrong with the following (False!) proof of the (False!)
statement “if ∑∞n=1 an is a convergent series; then ∑∞n=1(an)2 converges as well.”

1. Since ∑∞n=1 an is convergent, we know by the divergence test that limn→∞ an = 0.
2. So, for sufficiently large n ≥ N0, an ≤ 1.
3. Thus, (an)2 ≤ an for all n ≥ N0.
4. Since, by our hypothesis, ∑∞n=N0 an converges; by comparison test, ∑∞n=N0(an)2

converges as well.
5. Hence,∑∞n=1(an)2 = ∑N0−1

n=1 (an)2+∑∞n=N0(an)2 converges, which is what we wanted
to show.

Remark. There are more than one. Find all the mistakes.

(b) Show that the above statement is false by providing a counterexample. In other words,
find a sequence (an)∞n=1 such that

∞∑
n=1

an converges, but
∞∑
n=1

(an)2 diverges.

(c) What do we have to additionally assume to make sure that above statement and the
proof is correct?

(d) Suppose that ∑∞n=1(an)2 is a convergent series. Does this imply that ∑∞n=1 an is con-
vergent as well? Prove or give a counterexample.

Solution. (a) Observe that the argument used at step (3.) is “since an ≤ 1, we have,
(an)2 ≤ an;” but this is correct only if an ≥ 0. Because otherwise, the inequality
reverses.

Similarly, at step (4.), the comparison test is being used; however, this test works
only for series with all nonnegative terms. Therefore, this step is not correct as well
since an might as well be negative. For example, −1/n ≤ 0 for all n ∈ N, and∑∞
n=1 0 = 0 converges; but this does not imply that ∑∞n=1−1/n converges. In fact, it

diverges to −∞.
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(b) Consider an = (−1)n/
√
n. By the alternating series test (show this), ∑∞n=1 an =∑∞

n=1(−1)n/
√
n converges; however, ∑∞n=1(an)2 = ∑∞

n=1 1/n diverges to +∞.

(c) If we assume also that an is nonnegative the above statement and the proof is actually
correct.

(d) Unfortunately, even in the nonnegative case, the answer is no. Take for example an =
1/n. Then, ∑∞n=1(an)2 = ∑∞

n=1 1/n2 converges, but ∑∞n=1 an = ∑∞
n=1 1/n diverges. �

Problem 4. Suppose you have infinitely-many cube-shaped boxes, numbered from 1 to
infinity, such that the nth box has side length n−5/12 meters. Can you fill all these boxes
with paint? Can you paint all the inside surfaces of all of these boxes?

Solution. The volume of the nth cube is Vn = (n−5/12)3 = n−15/12 = n−5/4 cubic meters.
Similarly, the total inside surface area of the nth box (including the top lid) is An = 6 ×
(n−5/12)2 = 6n−10/12 = 6n−5/6 square meters. Hence, the total amount of paint needed to fill
all these boxes is ∞∑

n=1
Vn =

∞∑
n=1

n−5/4

cubic meters, which converges to a positive real number since 5/4 > 1. Hence, a finite
amount of paint will be enough to fill all these boxes with paint.

However, the total surface area we need to paint is
∞∑
n=1

An =
∞∑
n=1

6n−5/6 = 6
∞∑
n=1

n−5/6

square meters, which diverges to +∞ since 5/6 < 1.
So, actually, we cannot paint all the inside surfaces of all these boxes although we can

fill all the boxes with paint. (What!?) �

Problem 5. Determine if the following series converge absolutely, converge conditionally, or
diverge.

(a)
∞∑
n=1

nn

n!

(b)
∞∑
n=1

(−1)n (n+ 4)!
n! 2n

(c)
∞∑
n=1

(
(n+ 2)n

4n2

)

(d)
∞∑
n=1

(−1)n
sin

(
1 + 1

2n

)
√
n
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Solution. (a) Note that

nn

n! =

n-many terms︷ ︸︸ ︷
n× n× · · · × n

n× (n− 1)× · · · 1︸ ︷︷ ︸
n-many terms

= n

n︸︷︷︸
≥1

× n

n− 1︸ ︷︷ ︸
≥1

× · · · × n

1︸︷︷︸
≥1

≥ 1.

So, it cannot be true that limn→∞
nn

n! = 0. Thus, the series diverges.

(b) First, let us start with the absolute convergence. Let an = (−1)n (n+4)!
n! 2n . To check

absolute convergence, we apply ratio test to ∑∞n=1|an| to get,

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣∣(−1)n+1 (n+ 5)!
(n+ 1)! 2n+1

∣∣∣∣∣
/∣∣∣∣∣(−1)n (n+ 4)!

n! 2n

∣∣∣∣∣
= lim

n→∞

(n+ 5)!
(n+ 1)! 2n+1

n! 2n
(n+ 4)!

= lim
n→∞

(n+ 5)!
(n+ 4)!

n!
(n+ 1)!

2n
2n+1

= lim
n→∞

1
2
n+ 5
n+ 1

= 1
2 lim
n→∞

n+ 5
n+ 1 = 1

2 × 1 = 1
2 < 1.

So, by the ratio test, ∑∞n=1|an| converges. We conclude that the series converges abso-
lutely. Note that this immediately implies that ∑∞n=1 an converges.

(c) We can apply the ratio test since we have a series with all positive terms. Letting
an = (n+2)n

4n2 , we see:

an+1

an
=
[

(n+ 3)n+1

4(n+1)2

]/[
(n+ 2)n

4n2

]

= (n+ 3)n+1

(n+ 2)n
4n2

4(n+1)2

= (n+ 3)n
(n+ 2)n (n+ 3) 4n2

4n2+2n+1

=
(
n+ 3
n+ 2

)
(n+ 3) 1

42n+1

=
(

1 + 1
n+ 2

)n
︸ ︷︷ ︸

≤2n

(n+ 3) 1
4× 24n .

Hence, 0 ≤ an+1/an ≤ (n+3)2n/(4×24n) = (1/4)×(n+3)/23n. As limn→∞(n+3)/23n =
0, this shows that limn→∞

an+1
an

= 0 < 1. So, by the raito test the series converges
absolutely.
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(d) Observe that limn→∞ sin
(
1 + (1/2n)

)
= sin(1) > 0. Moreover, as n increases, 1 +

(1/2n) decreases from 1.5 (< π/2) to 1 (< π/2). So, as n increases, sin
(
1 + (1/2n)

)
decreases from sin(1.5) > 0 to sin(1) > 0. (See Figure 1.) So,∣∣∣∣∣∣∣(−1)n

sin
(
1 + 1

2n

)
√
n

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
sin

(
1 + 1

2n

)
√
n

∣∣∣∣∣∣∣ =
sin

(
1 + 1

2n

)
√
n

≥ sin(1)√
n
.

Since ∑∞n=1 sin(1)/
√
n = [sin(1)]∑∞n=1 1/

√
n diverges to +∞, we conclude that the

series does not converge absolutely.
Now let an = sin

(
1 + 1/(2n)

)
/
√
n, and apply the alternating series test. As we

saw above:

• an =
sin

(
1 + 1

2n

)
√
n

≥ 0;

• an+1 =
sin

(
1 + 1

2(n+1)

)
√
n+ 1

≤
sin

(
1 + 1

2n

)
√
n

= an; and

• lim
n→∞

an = lim
n→∞

sin
(
1 + 1

2n

)
√
n

= 0.

Hence, by the alternating series test, the series ∑∞n=1(−1)nan converges. So, the series
converges conditionally. �
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Figure 1: Plot for Problem 5 (d)
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