MATH 100:701 - 2018W Solutions for the Problems in Recitation Notes for Oct. 15th

Ahmet Alperen Bulut

October 15, 2018

Problem 1. Calculate the following limits.

- (a) $\lim_{x \to \infty} (\sqrt{x^2 + 1} x)$
- (b) $\lim_{x\to\infty}(\sqrt{x^2+x}-x)$
- Solution. (a) Multiplying the numerator and the denominator (which is one) with the conjugate of the above expression, we get,

$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x) = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{(\sqrt{x^2 + 1} + x)} = \lim_{x \to \infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0,$$

since the denominator gets arbitrarily large as x tends to $+\infty$.

(b) Similarly, we this time get,

$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x) = \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)}{(\sqrt{x^2 + x} + x)} = \lim_{x \to \infty} \frac{x^2 + x - x^2}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{x/x}{(\sqrt{x^2 + 1} + x)/x}$$
$$= \lim_{x \to \infty} \frac{1}{(\sqrt{(x^2 + 1)/x^2} + x/x)} = \lim_{x \to \infty} \frac{1}{(\sqrt{(1 + 1/x^2)} + 1)}$$
$$= \frac{1}{\sqrt{1 + 0} + 1} = \frac{1}{2}.$$

Problem 2. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series. Prove that the sequence $(b_n)_{n=1}^{\infty}$, defined by

$$b_n = \sum_{j=n}^{\infty} a_j,$$

converges to 0. In other words, show that $\lim_{n\to\infty} b_n = 0$.

Solution. Let, as usual, $s_n = \sum_{j=1}^n a_j = a_1 + a_2 + \cdots + a_n$ be the sequence of partial sums of $(a_n)_{n=1}^{\infty}$. As the series $\sum_{n=1}^{\infty} a_n$ converges, we know that $\lim_{n\to\infty} s_n$ exists and is a real number, say $L \in \mathbb{R}$. Observe that b_n converges for every $n \in \mathbb{N}$; since for $n \geq 2$,

$$b_n = \sum_{j=n}^{\infty} a_j = \left(\sum_{j=1}^{\infty} a_j\right) - \left(\sum_{j=1}^{n-1} a_j\right) = L - \left(\sum_{j=1}^{n-1} a_j\right).$$

Taking limit, we see that,

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(L - \sum_{j=1}^{n-1} a_j \right) = \lim_{n \to \infty} \left(L - s_{n-1} \right) = L - \lim_{n \to \infty} s_{n-1} = L - \lim_{n \to \infty} s_n = L - L = 0.$$

- **Problem 3.** (a) Explain what goes wrong with the following (False!) proof of the (False!) statement "if $\sum_{n=1}^{\infty} a_n$ is a convergent series; then $\sum_{n=1}^{\infty} (a_n)^2$ converges as well."
 - 1. Since $\sum_{n=1}^{\infty} a_n$ is convergent, we know by the divergence test that $\lim_{n\to\infty} a_n = 0$.
 - 2. So, for sufficiently large $n \ge N_0$, $a_n \le 1$.
 - 3. Thus, $(a_n)^2 \leq a_n$ for all $n \geq N_0$.
 - 4. Since, by our hypothesis, $\sum_{n=N_0}^{\infty} a_n$ converges; by comparison test, $\sum_{n=N_0}^{\infty} (a_n)^2$ converges as well.
 - 5. Hence, $\sum_{n=1}^{\infty} (a_n)^2 = \sum_{n=1}^{N_0-1} (a_n)^2 + \sum_{n=N_0}^{\infty} (a_n)^2$ converges, which is what we wanted to show.

Remark. There are more than one. Find all the mistakes.

(b) Show that the above statement is false by providing a counterexample. In other words, find a sequence $(a_n)_{n=1}^{\infty}$ such that

$$\sum_{n=1}^{\infty} a_n \text{ converges, but } \sum_{n=1}^{\infty} (a_n)^2 \text{ diverges.}$$

- (c) What do we have to additionally assume to make sure that above statement and the proof is correct?
- (d) Suppose that $\sum_{n=1}^{\infty} (a_n)^2$ is a convergent series. Does this imply that $\sum_{n=1}^{\infty} a_n$ is convergent as well? Prove or give a counterexample.
- Solution. (a) Observe that the argument used at step (3.) is "since $a_n \leq 1$, we have, $(a_n)^2 \leq a_n$;" but this is correct only if $a_n \geq 0$. Because otherwise, the inequality reverses.

Similarly, at step (4.), the comparison test is being used; however, this test works only for series with all nonnegative terms. Therefore, this step is not correct as well since a_n might as well be negative. For example, $-1/n \leq 0$ for all $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} 0 = 0$ converges; but this does not imply that $\sum_{n=1}^{\infty} -1/n$ converges. In fact, it diverges to $-\infty$.

- (b) Consider $a_n = (-1)^n / \sqrt{n}$. By the alternating series test (show this), $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ converges; however, $\sum_{n=1}^{\infty} (a_n)^2 = \sum_{n=1}^{\infty} 1/n$ diverges to $+\infty$.
- (c) If we assume also that a_n is nonnegative the above statement and the proof is actually correct.
- (d) Unfortunately, even in the nonnegative case, the answer is no. Take for example $a_n = 1/n$. Then, $\sum_{n=1}^{\infty} (a_n)^2 = \sum_{n=1}^{\infty} 1/n^2$ converges, but $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} 1/n$ diverges.

Problem 4. Suppose you have infinitely-many cube-shaped boxes, numbered from 1 to infinity, such that the *n*th box has side length $n^{-5/12}$ meters. Can you fill all these boxes with paint? Can you paint all the inside surfaces of all of these boxes?

Solution. The volume of the *n*th cube is $V_n = (n^{-5/12})^3 = n^{-15/12} = n^{-5/4}$ cubic meters. Similarly, the total inside surface area of the *n*th box (including the top lid) is $A_n = 6 \times (n^{-5/12})^2 = 6n^{-10/12} = 6n^{-5/6}$ square meters. Hence, the total amount of paint needed to fill all these boxes is

$$\sum_{n=1}^{\infty} V_n = \sum_{n=1}^{\infty} n^{-5/4}$$

cubic meters, which converges to a positive real number since 5/4 > 1. Hence, a finite amount of paint will be enough to fill all these boxes with paint.

However, the total surface area we need to paint is

$$\sum_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} 6 n^{-5/6} = 6 \sum_{n=1}^{\infty} n^{-5/6}$$

square meters, which diverges to $+\infty$ since 5/6 < 1.

So, actually, we cannot paint all the inside surfaces of all these boxes although we can fill all the boxes with paint. (What!?)

Problem 5. Determine if the following series converge absolutely, converge conditionally, or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{(n+4)!}{n! 2^n}$
(c) $\sum_{n=1}^{\infty} \left(\frac{(n+2)^n}{4^{n^2}} \right)$
(d) $\sum_{n=1}^{\infty} (-1)^n \frac{\sin\left(1+\frac{1}{2n}\right)}{\sqrt{n}}$

Solution. (a) Note that

$$\frac{n^n}{n!} = \underbrace{\underbrace{\frac{n \cdot \max \text{ terms}}{n \times n \times \dots \times n}}_{n \cdot \max \text{ terms}} = \underbrace{\frac{n}{n}}_{\text{ length}} \times \underbrace{\frac{n}{n-1}}_{\geq 1} \times \dots \times \underbrace{\frac{n}{1}}_{\geq 1} \geq 1$$

So, it cannot be true that $\lim_{n\to\infty} \frac{n^n}{n!} = 0$. Thus, the series diverges.

(b) First, let us start with the absolute convergence. Let $a_n = (-1)^n \frac{(n+4)!}{n! 2^n}$. To check absolute convergence, we apply ratio test to $\sum_{n=1}^{\infty} |a_n|$ to get,

$$\begin{split} \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} &= \lim_{n \to \infty} \left| (-1)^{n+1} \frac{(n+5)!}{(n+1)! \, 2^{n+1}} \right| \Big/ \left| (-1)^n \frac{(n+4)!}{n! \, 2^n} \\ &= \lim_{n \to \infty} \frac{(n+5)!}{(n+1)! \, 2^{n+1}} \frac{n! \, 2^n}{(n+4)!} \\ &= \lim_{n \to \infty} \frac{(n+5)!}{(n+4)!} \frac{n!}{(n+1)!} \frac{2^n}{2^{n+1}} \\ &= \lim_{n \to \infty} \frac{1}{2} \frac{n+5}{n+1} \\ &= \frac{1}{2} \lim_{n \to \infty} \frac{n+5}{n+1} = \frac{1}{2} \times 1 = \frac{1}{2} < 1. \end{split}$$

So, by the ratio test, $\sum_{n=1}^{\infty} |a_n|$ converges. We conclude that the series converges absolutely. Note that this immediately implies that $\sum_{n=1}^{\infty} a_n$ converges.

(c) We can apply the ratio test since we have a series with all positive terms. Letting $a_n = \frac{(n+2)^n}{4^{n^2}}$, we see:

$$\frac{a_{n+1}}{a_n} = \left[\frac{(n+3)^{n+1}}{4^{(n+1)^2}}\right] \left/ \left[\frac{(n+2)^n}{4^{n^2}}\right]$$
$$= \frac{(n+3)^{n+1}}{(n+2)^n} \frac{4^{n^2}}{4^{(n+1)^2}}$$
$$= \frac{(n+3)^n}{(n+2)^n} (n+3) \frac{4^{n^2}}{4^{n^2+2n+1}}$$
$$= \left(\frac{n+3}{n+2}\right) (n+3) \frac{1}{4^{2n+1}}$$
$$= \underbrace{\left(1 + \frac{1}{n+2}\right)^n}_{\leq 2^n} (n+3) \frac{1}{4 \times 2^{4n}}.$$

Hence, $0 \leq a_{n+1}/a_n \leq (n+3)2^n/(4\times 2^{4n}) = (1/4)\times (n+3)/2^{3n}$. As $\lim_{n\to\infty} (n+3)/2^{3n} = 0$, this shows that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0 < 1$. So, by the raito test the series converges absolutely.

(d) Observe that $\lim_{n\to\infty} \sin(1+(1/2n)) = \sin(1) > 0$. Moreover, as *n* increases, 1 + (1/2n) decreases from 1.5 ($< \pi/2$) to 1 ($< \pi/2$). So, as *n* increases, $\sin(1+(1/2n))$ decreases from $\sin(1.5) > 0$ to $\sin(1) > 0$. (See Figure 1.) So,

$$\left| (-1)^n \frac{\sin\left(1 + \frac{1}{2n}\right)}{\sqrt{n}} \right| = \left| \frac{\sin\left(1 + \frac{1}{2n}\right)}{\sqrt{n}} \right| = \frac{\sin\left(1 + \frac{1}{2n}\right)}{\sqrt{n}} \ge \frac{\sin(1)}{\sqrt{n}}.$$

Since $\sum_{n=1}^{\infty} \sin(1)/\sqrt{n} = [\sin(1)] \sum_{n=1}^{\infty} 1/\sqrt{n}$ diverges to $+\infty$, we conclude that the series does not converge absolutely.

Now let $a_n = \sin((1 + 1/(2n)))/\sqrt{n}$, and apply the alternating series test. As we saw above:

•
$$a_n = \frac{\sin\left(1 + \frac{1}{2n}\right)}{\sqrt{n}} \ge 0;$$

• $a_{n+1} = \frac{\sin\left(1 + \frac{1}{2(n+1)}\right)}{\sqrt{n+1}} \le \frac{\sin\left(1 + \frac{1}{2n}\right)}{\sqrt{n}} = a_n;$ and
• $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sin\left(1 + \frac{1}{2n}\right)}{\sqrt{n}} = 0.$

Hence, by the alternating series test, the series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges. So, the series converges conditionally.

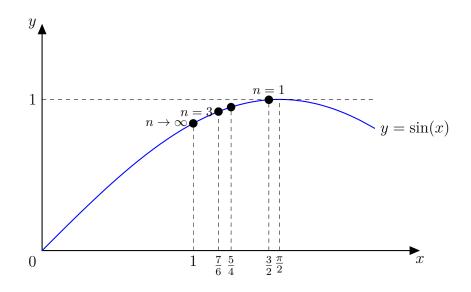


Figure 1: Plot for Problem 5 (d)

A. A. Bulut, Department of Mathematics, The University of British Columbia, 1984 Mathematics Road, Vancouver BC, Canada V6T 1Z2

E-mail address: aabulut@math.ubc.ca