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1 L’Hôpital’s Rule
Let us go back to the beginning of our course where we talked about limits. Suppose we are
given a problem like the following.

A Motivating Example. Find the limit

lim
x→1

log(x)
x2 − 1

.

At first, it seems like we cannot use the methods we have learned so far to calculate this
limit. Observe that for both the numerator and the denominator we have,

lim
x→1

(
log(x)

)
= 0 and lim

x→1
(x2 − 1) = 0.

Now consider the following three examples:

• lim
x→0

x3

x
= 0;

• lim
x→0

x

x
= 1;

• lim
x→0

x

x3 = +∞.

Although in all three of these, the limits of both numerators and denominators, separately,
are 0; it seems that we can get all kinds of different results as the final limit. However, notice
that as x approaches to 0, the function x3 is approaching 0 faster than the function x does.
This means that for x values sufficiently close to 0; the function x3 is closer to 0 than x
is. And indeed, as can be seen in Figure 1, if |x| < 1; then |x3| < |x|. Or, in particular, if
|x| < 1; then the red curve is closer to x-axis than the blue curve is.

In fact, in these three examples above, the value of the limit is closely related to the
ratio of the rate at which the numerator and the denominator approaches to 0. Hence, since
the derivative of a function at a point measures the rate of change of the function at that
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Figure 1: The Plot of the Functions x and x3

point, it is reasonable to think that these limits can be computed using the derivatives of
the numerator and the denominator at x = 0.

Now let’s get back to our motivating example: limx→1[log(x)/(x2 − 1)]. Note that this
time, we are approaching x = 1 rather than x = 0. The plot of the functions y = log(x) and
y = x2 − 1, as well as their tangent lines at x = 1, is given in Figure 2.
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Figure 2: The Plot of the Functions log(x) and x2 − 1
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Considering the plot of these functions, and their tangent lines at x = 1, it is reasonable
to think that one might have

lim
x→1

log(x)
x2 − 1

= lim
x→1

d
dx

(
log(x)

)
d
dx

(
x2 − 1

)
= lim

x→1

1/x

2x
= 1/2.

And this is a particular example of what is called L’Hôpital’s rule.

Theorem 1 (L’Hôpital’s Rule). (a) Let f(x) and g(x) be differentiable on an interval
containing a, and let g′(x) 6= 0 on that interval, except possibly at a. Let limx→a f(x) =
limx→a g(x) = 0. Then,

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) ,

provided the limit on the right-hand side exists, or is ∞ or −∞.

(b) The rule stated above still holds if
• the number a is replaced by either ∞ or −∞; or
• in the second sentence above, we instead have limx→a f(x) = limx→a g(x) =
∞ or −∞.

There are many different versions and generalizations of L’Hôpital’s rule, and the proof
is rather technical. That is why we skip the proof. However, for the curious reader, we refer
to [FR17, pp. 330-334].
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2 Problems
Problem 1 (Exercise 1). Evaluate the following limits.

(a) lim
x→∞

xn

ex , where n is a natural number.

(b) lim
x→0

cos(x)− cos(2x)
ex − x− 1 .

(c) lim
x→0+

xx.

Solution. (a) Let n ∈ N be a fixed natural number, f(x) := xn, and g(x) := ex. Observe
that limx→∞ f(x) = limx→∞ g(x) = ∞, and both f(x) and g(x) are differentiable
everywhere, so we will try to use L’Hôpital’s rule.

However, before, note that the derivatives of order k ∈ N of these functions are

f (k)(x) =

n(n− 1) · · · (n− k + 1)xn−k, if 1 ≤ k ≤ n;
0, if k ≥ n + 1;

and g(k)(x) = ex.

And so, for 1 ≤ k ≤ n− 1, we have limx→∞ f (k)(x) = limx→∞ g(k)(x) =∞.
A repeated application of L’Hôpital’s rule then gives,

lim
x→∞

xn

ex = lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x) (If the limit exists.)

= lim
x→∞

f (2)(x)
g(2)(x)

(If the limit exists.)

...

= lim
x→∞

f (n)(x)
g(n)(x)

(If the limit exists.)

= lim
x→∞

n!
ex (If the limit exists.)

= 0.

Remark. This is why at the beginning of the course we said, “the exponential grows
much faster than polynomials.”

(b) Let f(x) := cos(x)−cos(2x), and g(x) := ex−x−1, which are differentiable everywhere.
We see that

lim
x→0

f(x) = lim
x→0

g(x) = 0.

So, using L’Hôspital’s rule, we get,

lim
x→0

f(x)
g(x) = lim

x→0

f ′(x)
g′(x) lim

x→0

(
− sin(x) + 2 sin(2x)

ex − 1

)
,
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provided that this limit exists.
We again see that

lim
x→0

f ′(x) = lim
x→0

g′(x) = 0,

so using L’Hôspital’s rule again, we obtain,

lim
x→0

f ′(x)
g′(x) = lim

x→0

f ′′(x)
g′′(x) = lim

x→0

(
− cos(x) + 4 cos(2x)

ex

)
,

provided that this latter limit exists. It does and its value is 3. Hence,

lim
x→0

cos(x)− cos(2x)
ex − x− 1 = 3.

(c) First, we start with

lim
x→0+

xx = lim
x→0+

exp
(
log (xx)

)
= lim

x→0+
exp

(
x log(x)

)
= exp

(
lim

x→0+
x log(x)

)
,

provided that these limits exist. Note that exp(x) is just another notation for ex, and
at the last step above, we used that the function ex is continuous everywhere.

Hence, let us focus on the limit limx→0+ x log(x). Rewriting this limit, and applying
L’Hôspital’s rule, we see

lim
x→0+

x log(x) = lim
x→0+

x log(x) = lim
x→0+

(
log(x)
1/x

)

= lim
x→0+


d
dx

(
log(x)

)
d
dx

(
1/x

)


= lim
x→0+

(
1/x

−1/x2

)
= lim

x→0+
(−x) ,

provided that this limit exists. Note that we can apply L’Hôspital’s rule even tough
we have a one-sided limit. The above limit exists and its value is 0. So,

lim
x→0+

xx = exp
(

lim
x→0+

x log(x)
)

= exp(0) = e0 = 1.

Alternative Approach. Taking the limit as x → 0+ actually is the same thing as
taking limit as z = 1/x→∞. In other words,

lim
x→0+

f(x) = lim
z→∞

f(1/z).
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Hence,

lim
x→0+

xx = lim
z→∞

(
1
z

)1/z

= lim
z→∞

exp
(

log
[(

1/z
)1/z

])
= lim

z→∞
exp

(
log

[(
1/z

)1/z
])

= lim
z→∞

exp
(

log
(
1/z

)
z

)

= exp
 lim

z→∞

[
log

(
1/z

)
z

] .

Then, we can apply L’Hôspital’s rule to the limit

lim
z→∞

[
log

(
1/z

)
z

]

to reach the same conclusion. �

Problem 2 (Exercise 2). Explain why you shouldn’t use L’Hôspital’s rule to evaluate

lim
x→0

sin(x)
x

.

(You actually can use it, but still shouldn’t.)

Solution. Let f(x) := sin(x) and g(x) := x. Observe that

lim
x→0

sin(x) = lim
x→0

x = 0,

and both the functions sin(x) and x are differentiable everywhere.
If we want to use L’Hôspital’s rule now, we end up with

lim
x→0

d
dx

(
sin(x)

)
d
dx

(x)
= lim

x→0

cos(x)
1 = 1,

which we know is the correct value.
But here, we needed to use that

d
dx

(
sin(x)

)
= cos(x).
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However, remember that to prove this, we used the definition of the derivative and the
definition of sin(x) (using the unit circle), and got

d
dx

(
sin(x)

)
= lim

h→0

(
sin(x + h)− sin(x)

h

)

= lim
h→0

(
sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

)

= sin(x)
[
lim
h→0

cos(h)− 1
h

]
+ cos(x)

[
lim
h→0

sin(h)
h

]
︸ ︷︷ ︸

The same limit we want to evaluate.

So, in order to use L’Hôspital’s rule to evaluate limx→0[sin(x)/x], we need to use the fact
that limx→0[sin(x)/x] = 1. This is what is called circular reasoning and it is a logical fallacy.
If it was valid, this type of reasoning could be used to prove any statement—regardless of
that it is in fact true or false—and it is not logical.
Remark. If one can show that the derivative of sin(x) is cos(x) without using

lim
x→0

sin(x)
x

= 1;

it is of course perfectly valid to use L’Hôspital’s rule here. However, the other ways I
(meaning the author of these notes) can think of are all somewhat more complicated and
use different ideas. And in all these cases, using the very same ideas, you can show that
limx→0[sin(x)/x] = 1 without using the rule anyway.

But maybe you can come up with another, an easier, way to show that the derivative of
sin(x) is cos(x) without the need to evaluate this limit. If you can, please do email me, I
would definitely like to hear about it.

�
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