TABLE OF CONTENTS

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

2/515

Suppose the population of a small country is given in the chart below.

Definition

Let $y=f(x)$ be a curve that passes through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the average rate of change of $f(x)$ when $x_{1} \leq x \leq x_{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

6/515

Average Rate of Change and Slope

The average rate of change of a function $f(x)$ on the interval $[a, b]$ (where $a \neq b$) is "change in output" divided by "change in input:"

$$
\frac{f(b)-f(a)}{b-a}
$$

If the function $f(x)$ is a line, then the slope of the line is "rise over run,"

$$
\frac{f(b)-f(a)}{b-a}
$$

If a function is a line, its slope is the same as its average rate of change, which is the same for every interval.

If a function is not a line, its average rate of change might be different for different intervals, and we don't have a definition (yet) for its "slope."

Table of Contents

How fast was this population growing in the year 2010? (What was its instantaneous rate of change?)

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.

We call the slope of the secant line the average rate of change of $f(x)$ from R to Q.

Definition

The tangent line to the curve $y=f(x)$ at point P is a line that

- passes through P and
- has the same slope as $f(x)$ at P.

We call the slope of the tangent line the instantaneous rate of change of $f(x)$ at P.

TABLE OF CONTENTS

It took $\frac{1}{2}$ hour to bike 6 km . 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

At 8:25, the speedometer on my bike reads 5 kph .5 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
C. tangent line to $y=s(t)$ at $t=8: 25$
D. slope of the tangent line to $y=s(t)$ at $t=8: 25$

Let's look for an algebraic way of determining the velocity of the
balloon when $t=5$.
Let's look for an algebraic way of determining the velocity of the
balloon when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$. Try to estimate how fast the balloon is rising when $t=5$.

18/51

Our First Limit

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

$$
\mathrm{Vel} \approx 10
$$

$$
\mathrm{vel}=\frac{\Delta \text { height }}{\Delta \text { time }}=\frac{s(5+h)-s(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h}
$$

Limit Notation

We write:

$$
\lim _{h \rightarrow 0}(10+h)=10
$$

We say: "The limit as h goes to 0 of $(10+h)$ is $10 . "$

It means: As h gets extremely close to $0,(10+h)$ gets extremely close to 10 .

Table of Contents

LIMIT NOTATION
We write:

$$
\lim _{h \rightarrow 0}(10+h)=10
$$

We say: "The limit as h goes to 0 of $(10+h)$ is $10 . "$
It means: As h gets extremely close to $0,(10+h)$ gets extremely close
to 10 .
21/515

Finding Slopes of Tangent Lines

We NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by

$$
\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}
$$

EvaLuATING LIMITS

Let $f(x)=\frac{x^{3}+x^{2}-x-1}{x-1}$.
We want to evaluate $\lim _{x \rightarrow 1} f(x)$.

Definition 1.3.7

The limit as x goes to a from the left of $f(x)$ is written

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

We only consider values of x that are less than a.
The limit as x goes to a from the right of $f(x)$ is written

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

We only consider values of x greater than a.

One-Sided Limits

What do you think $\lim _{x \rightarrow 3} f(x)$ should be?

Theorem 1.3.8

In order for $\lim _{x \rightarrow a} f(x)$ to exist, both one-sided limits must exist and be equal.

Consider the function $f(x)=\frac{1}{(x-1)^{2}}$. For what value(s) of x is $f(x)$
not defined?
A STRANGER LIMIT EXAMPLE
What is $\lim _{x \rightarrow 0} f(x)$? A STRANGER LIMIT EXAMPLE
?

$f(x)=\left\{\begin{array}{rr}4 & x \leq 0 \\ x^{2} & x>0\end{array}\right.$

What is $\lim _{x \rightarrow 0} f(x)$? What is $\lim _{x \rightarrow 0^{+}} f(x)$? What is $f(0)$?
A. $\lim _{x \rightarrow 0^{+}} f(x)=4$
B. $\lim _{x \rightarrow 0^{+}} f(x)=0$
C. $\lim _{x \rightarrow 0^{+}} f(x)= \begin{cases}4 & x \leq 0 \\ 0 & x>0\end{cases}$
D. none of the above

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=22=\lim _{x \rightarrow 3+} f(x)$.

Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist and are equal to each other.
B. No, never, because we only talk about one-sided limits when the actual limit doesn't exist.
C. Can't tell. We need to know the value of the function at $x=3$.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$.

Does $\lim _{x \rightarrow 3} f(x)$ exist?

A. Yes, certainly, because the limits from both sides exist.
B. No, never, because the limit from the left is not the same as the limit from the right.
C. Can't tell. For some functions is might exist, for others not.

Table of Contents

Calculating Limits in Simple Situations

Direct Substitution - Theorem 1.4.10

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x+3}\right)$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x-3}\right)$

Algebra with Limits: Theorem 1.4.2

Suppose $\lim _{x \rightarrow a} f(x)=F$ and $\lim _{x \rightarrow a} g(x)=G$, where F and G are both real numbers. Then:

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$
- $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$
- $\lim _{x \rightarrow a}(f(x) g(x))=F G$
- $\lim _{x \rightarrow a}(f(x) / g(x))=F / G$ provided $G \neq 0$

Calculate: $\lim _{x \rightarrow 1}\left[\frac{2 x+4}{x+2}+13\left(\frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right)\right]$

Limits involving Powers and Roots

Which of the following gives a real number?
A. $4^{\frac{1}{2}}$
B. $(-4)^{\frac{1}{2}}$
C. $4^{-\frac{1}{2}}$
D. $(-4)^{-\frac{1}{2}}$
E. $8^{1 / 3}$
F. $(-8)^{1 / 3}$
G. $8^{-1 / 3}$
H. $(-8)^{-1 / 3}$

Powers of Limits - Theorem 1.4.8

If n is a positive integer, and $\lim _{x \rightarrow a} f(x)=F$ (where F is a real number), then:

$$
\lim _{x \rightarrow a}(f(x))^{n}=F^{n}
$$

Furthermore, unless n is even and F is negative,

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=F^{1 / n}
$$

$$
\lim _{x \rightarrow 4}(x+5)^{1 / 2}
$$

CAUTIONARY TALES

- $\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x}$
$\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8}$
- $\lim _{x \rightarrow 0} \frac{32}{x}$
- $\lim _{x \rightarrow 5}\left(x^{2}+2\right)^{1 / 3}$

Suppose you want to evaluate $\lim _{x \rightarrow 1} f(x)$, but $f(1)$ doesn't exist. What does that tell you?

A $\lim _{x \rightarrow 1} f(x)$ may exist, and it may not exist.
B We can find $\lim _{x \rightarrow 1} f(x)$ by plugging in 1 to $f(x)$.
C Since $f(1)$ doesn't exist, it is not meaningful to talk about $\lim _{x \rightarrow 1} f(x)$.

D Since $f(1)$ doesn't exist, automatically we know $\lim _{x \rightarrow 1} f(x)$ does not exist.
$\mathrm{E} \lim _{x \rightarrow 1} f(x)$ does not exist if we are "dividing by zero," but may exist otherwise.

Which of the following statements is true about $\lim _{x \rightarrow 0} \frac{\sin x}{x^{3}-x^{2}+x}$?
A $\lim _{x \rightarrow 0} \frac{\sin x}{x^{3}-x^{2}+x}=\frac{\sin 0}{0^{3}-0^{2}+0}=\frac{0}{0}$
B Since the function $\frac{\sin x}{x^{3}-x^{2}+x}$ is not rational, its limit at 0 does not exist.

C Since the numerator and denominator of $\frac{\sin x}{x^{3}-x^{2}+x}$ are both 0 when $x=0$, the limit exists.

D Since the function $\frac{\sin x}{x^{3}-x^{2}+x}$ is not defined at 0 , plugging in $x=0$ will not tell us the limit.

E Since the function $\frac{\sin x}{x^{3}-x^{2}+x}$ consists of the quotient of polynomials and trigonometric functions, its limit exists everywhere.

Which of the following statements is true about $\lim _{x \rightarrow 1} \frac{\sin x}{x^{3}-x^{2}+x}$?

A $\lim _{x \rightarrow 1} \frac{\sin x}{x^{3}-x^{2}+x}=\frac{\sin 1}{1^{3}-1^{2}+1}=\sin 1$

B Since the function $\frac{\sin x}{x^{3}-x^{2}+x}$ is not rational, its limit at 1 does not exist.

C Since the function $\frac{\sin x}{x^{3}-x^{2}+x}$ is not defined at 1, plugging in $x=1$ will not tell us the limit.

D Since the numerator and denominator of $\frac{\sin x}{x^{3}-x^{2}+x}$ are both 0 when $x=1$, the limit exists.

Functions that Differ at a Single Point - Theorem 1.4.12

Suppose $\lim _{x \rightarrow a} g(x)$ exists, and $f(x)=g(x)$
when x is close to a (but not necessarily equal to a).
Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Evaluate $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x-1}$.

A Few Strategies for Calculating Limits

First, hope that you can directly substitute (plug in). If your function is made up of the sum, difference, product, quotient, or power of polynomials, you can do this provided the function exists where you're taking the limit.

$$
\lim _{x \rightarrow 1}\left(\sqrt{35+x^{5}}+\frac{x-3}{x^{2}}\right)^{3}=
$$

To take a limit outside the domain of a function (that is made up of the sum, difference, product, quotient, or power of polynomials) try to simplify and cancel.
$\lim _{x \rightarrow 0} \frac{x+7}{\frac{1}{x}-\frac{1}{2 x}}$

Otherwise, you can try graphing the function, or making a table of values, to get a better picture of what is going on

Denominators Approaching Zero

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}} \\
& \lim _{x \rightarrow 1} \frac{-1}{(x-1)^{2}} \\
& \lim _{x \rightarrow 1^{-}} \frac{1}{x-1} \\
& \lim _{x \rightarrow 1^{+}} \frac{1}{x-1}
\end{aligned}
$$

Denominators Approaching Zero

Now
 You

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{x}{x^{2}-4} \\
& \lim _{x \rightarrow 2^{-}} \frac{x}{4-x^{2}}
\end{aligned}
$$

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}
$$

Squeeze Theorem - Theorem 1.4.17

Suppose, when x is near (but not necessarily equal to) a, we have functions $f(x), g(x)$, and $h(x)$ so that

$$
f(x) \leq g(x) \leq h(x)
$$

and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)$. Then $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} f(x)$.

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Evaluate: $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$	$\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$ $-1 \quad \leq \quad \sin \left(\frac{1}{x}\right) \quad \leq$
TABLE OF CONTENTS	END BEHAVIOR
	We write: $\lim _{x \rightarrow \infty} f(x)=L$ to express that, as x grows larger and larger, $f(x)$ approaches L. Similarly, we write: $\lim _{x \rightarrow-\infty} f(x)=L$ to express that, as x grows more and more strongly negative, $f(x)$ approaches L. If L is a number, we call $y=L$ a horizontal asymptote of $f(x)$.

Horizontal Asymptotes

$y=0$ is a horizontal asymptote for $y=\sin \left(\frac{1}{x}\right)$

COMMON LIMITS AT INFINITY

$$
\begin{aligned}
\lim _{x \rightarrow \infty} 13 & = & \lim _{x \rightarrow \infty} x^{3}= \\
\lim _{x \rightarrow-\infty} 13 & = & \lim _{x \rightarrow-\infty} x^{3}= \\
\lim _{x \rightarrow \infty} \frac{1}{x} & = & \lim _{x \rightarrow-\infty} x^{5 / 3}= \\
\lim _{x \rightarrow-\infty} \frac{1}{x} & = & \lim _{x \rightarrow-\infty} x^{2 / 3}= \\
\lim _{x \rightarrow \infty} x^{2} & = & \\
\lim _{x \rightarrow-\infty} x^{2} & = &
\end{aligned}
$$

CALCULATING Limits AT INFINITY

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{3}}
$$

CALCULATING Limits AT INFINITY
$\lim _{x \rightarrow-\infty}\left(x^{7 / 3}-x^{5 / 3}\right)$

Again: factor out largest power of x.

65/515 Example 1.5.8

Calculating Limits at Infinity

$$
\begin{aligned}
& \text { Now } \quad \lim _{x \rightarrow \infty} \sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}} \\
& \text { You gity }
\end{aligned}
$$

Calculating Limits at Infinity

Suppose the height of a bouncing ball is given by $h(t)=\frac{\sin (t)+1}{t}$, for
$t \geq 1$. What happens to the height over a long period of time?

66/515

TABLE OF CONTENTS

Definitions 1.6.1 and 1.6.2

A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

CONTINUITY

Definition 1.6.1

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Does $f(x)$ exist at $x=1$?
Is $f(x)$ continuous at $x=1$?

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Continuous Functions

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & , \quad x \neq 0 \\ 0 & , \quad x=0\end{cases}
$$

Is $f(x)$ continuous at 0 ?

Common Functions - Theorem 1.6.8

Functions of the following types are continuous over their domains:

- polynomials and rationals
- roots and powers
- trig functions and their inverses
- exponential and logarithm
- The products, sums, differences, quotients, powers, and compositions of continuous functions

A TECHNICAL POINT

Definition 1.6.3

A function $f(x)$ is continuous on the closed interval $[a, b]$ if:

- $f(x)$ is continuous over (a, b), and
- $f(x)$ is continuous from the left at b, and
- $f(x)$ is continuous from the right at a

b

Intermediate Value Theorem (IVT) - Theorem 1.6.12
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Suppose your favourite number is 45.54 . At noon, your car is parked, and at 1 pm you're driving 100 kph .

Intermediate Value Theorem (IVT) - Theorem 1.6.12
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:
$f(0)=2$
$f(1)=1$
$f(-1)=-1$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.

$$
f(0)=2, f(-1)=-1
$$

reasonable interval where the following is true: $e^{x}=\sin (x)$. (Don't
use a calculator - use numbers you can easily evaluate.)

Use the Intermediate Value Theorem to show that there exists some solution to the equation $\ln x \cdot e^{x}=4$, and give a reasonable interval where that solution might occur.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.

Suppose $\lim _{x \rightarrow 1} f(x)=2$. Must it be true that $f(1)=2$?

Suppose $f(x)$ is continuous at $x=1$ and $f(1)=22$. What is $\lim _{x \rightarrow 1} f(x)$?

$$
f(x)= \begin{cases}a x^{2} & x \geq 1 \\ 3 x & x<1\end{cases}
$$

For which value(s) of a is $f(x)$ continuous?

$$
f(x)= \begin{cases}\frac{\sqrt{3} x+3}{x^{2}-3} & x \neq \pm \sqrt{3} \\ a & x= \pm \sqrt{3}\end{cases}
$$

Derivative at a Point

Definition 2.2.1

Given a function $f(x)$ and a point a, the slope of the tangent line to $f(x)$ at a is the derivative of f at a, written $f^{\prime}(a)$.

So, $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
$f^{\prime}(a)$ is also the instantaneous rate of change of f at a.

Table of Contents

Derivative

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If $f^{\prime}(a)>0$, then f is increasing at a. Its graph "points up."

If $f^{\prime}(a)<0$, then f is decreasing at a. Its graph "points down."

If $f^{\prime}(a)=0$, then f looks constant or flat at a.

Practice: Increasing and Decreasing

101/515

Let's keep the function $f(x)=x^{2}-5$. We just showed $f^{\prime}(3)=6$. We can also find its derivative at an arbitrary point x :

Use the definition of the derivative to find the slope of the tangent line to $f(x)=x^{2}-5$ at the point $x=3$.

102/515 Example 2.2.5

104/515

Increasing and Decreasing

In black is the curve $y=f(x)$. Which of the coloured curves corresponds to $y=f^{\prime}(x)$?

A

B

Derivative as a Function - Definition 2.2.6

Let $f(x)$ be a function.
The derivative of $f(x)$ with respect to x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists. Notice that x will be a part of your final expression: this is a function.

If $f^{\prime}(x)$ exists for all x in an interval (a, b), we say that f is differentiable on (a, b).

Increasing and Decreasing

In black is the curve $y=f(x)$. Which of the coloured curves corresponds to $y=f^{\prime}(x)$?

A

C

Notation 2.2.8

The "prime" notation $f^{\prime}(x)$ and $f^{\prime}(a)$ is sometimes called Newtonian notation. We will also use Leibnitz notation:
$\frac{\mathrm{d} f}{\mathrm{~d} x}$
$\frac{\mathrm{d} f}{\mathrm{~d} x}(a)$
$\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
$\left.\frac{\mathrm{d}}{\mathrm{d} x} f(x)\right|_{x=a}$
function
function

Newtonian Notation:

$$
f(x)=x^{2}+5 \quad f^{\prime}(x)=2 x \quad f^{\prime}(3)=6
$$

Leibnitz Notation:
$\frac{\mathrm{d} f}{\mathrm{~d} x}=$

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(3)=\quad \frac{\mathrm{d}}{\mathrm{~d} x} f(x)=
$$

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right|_{x=3}=
$$

Let $f(x)=\sqrt{x}$. Using the definition of a derivative, calculate $f^{\prime}(x)$.

Alternate Definition - Definition 2.2.1

Calculating

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

is the same as calculating

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Notice in these scenarios, $h=x-a$.

110/515
 $\longrightarrow x$

$$
\begin{array}{lll}
\text { Review: } & \lim _{x \rightarrow \infty} \sqrt{x}= & \lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x}}= \\
\lim _{x \rightarrow 0^{+}} \sqrt{x}= & \lim _{x \rightarrow 0^{+}} \frac{1}{2 \sqrt{x}}= &
\end{array}
$$

Using the definition of the derivative, calculate $\frac{\mathrm{d}}{\mathrm{d} x}\left\{\frac{2 x}{x+1}\right\}$.

Using the definition of the derivative, calculate $\frac{\mathrm{d}}{\mathrm{d} x}\left\{\frac{1}{\sqrt{x^{2}+x}}\right\}$.

Memorize

The derivative of a function f at a point a is given by the following limit, if it exists:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

ZOOMING IN

For a smooth function, if we zoom in at a point, we see a line:

In this example, the slope of our zoomed-in line looks to be about:

$$
\frac{\Delta y}{\Delta x} \approx-\frac{1}{2}
$$

Alternate Definition - Definition 2.2.1

Calculating

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

is the same as calculating

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Notice in these scenarios, $h=x-a$.
The derivative of $f(x)$ does not exist at $x=a$ if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

does not exist.
Note this is the slope of the tangent line to $y=f(x)$ at $x=a, \frac{\Delta y}{\Delta x}$.

ZOOMING IN ON FUNCTIONS THAT AREN'T SMOOTH

For a function with a cusp or a discontinuity, even though we zoom in very closely, we don't see simply a single straight line.

When Derivatives Don't Exist
What happens if we try to calculate a derivative where none exists?
Find the derivative of $f(x)=x^{1 / 3}$ at $x=0$.

Theorem 2.2.14

If the function $f(x)$ is differentiable at $x=a$, then $f(x)$ is also continuous at $x=a$

Proof:

Let $f(x)$ be a function and let a be a constant in its domain. Draw a picture of each scenario, or say that it is impossible.

$f(x)$ continuous at $x=a$ $f(x)$ differentiable at $x=a$	$f(x)$ continuous at $x=a$ $f(x)$ differentiable at $x=a$
$\begin{aligned} & f(x) \text { continuous at } x=a \\ & f(x) \text { differentiable at } x=a \end{aligned}$	$f(x)$ continuous at $x=a$ $f(x)$ differentiable at $x=a$

Interpreting the Derivative

The derivative of $f(x)$ at a, written $f^{\prime}(a)$, is the instantaneous rate of change of $f(x)$ when $x=a$.

Interpreting the Derivative

The derivative of $f(x)$ at a, written $f^{\prime}(a)$, is the instantaneous rate of change of $f(x)$ when $x=a$.

Suppose $P(t)$ gives the number of people in the world at t minutes past midnight, January 1, 2012. Suppose further that $P^{\prime}(0)=156$.
How do you interpret $P^{\prime}(0)=156$?

Interpreting the Derivative

The derivative of $f(x)$ at a, written $f^{\prime}(a)$, is the instantaneous rate of change of $f(x)$ when $x=a$.

Suppose $P(n)$ gives the total profit, in dollars, earned by selling n widgets. How do you interpret $P^{\prime}(100)$?

Interpreting the Derivative

The derivative of $f(x)$ at a, written $f^{\prime}(a)$, is the instantaneous rate of change of $f(x)$ when $x=a$.

Suppose $h(t)$ gives the height of a rocket t seconds after liftoff. What is the interpretation of $h^{\prime}(t)$?
125/515
126/515

Interpreting the Derivative

The derivative of $f(x)$ at a, written $f^{\prime}(a)$, is the instantaneous rate of change of $f(x)$ when $x=a$.

Suppose $M(t)$ is the number of molecules of a chemical in a test tube t seconds after a reaction starts. Interpret $M^{\prime}(t)$.

Interpreting the Derivative

The derivative of $f(x)$ at a, written $f^{\prime}(a)$, is the instantaneous rate of change of $f(x)$ when $x=a$.

Suppose $G(w)$ gives the diameter in millimetres of steel wire needed to safely support a load of $w \mathrm{~kg}$. Suppose further that $G^{\prime}(100)=0.01$. How do you interpret $G^{\prime}(100)=0.01$?

A paper ${ }^{1}$ on the impacts of various factors in average life expectancy contains the following:

The only statistically significant variable in the model is physician density. The coefficient for this variable 20.67 indicating that a one unit increase in physician density leads to a 20.67 unit increase in life expectancy. This variable is also statistically significant at the 1% level demonstrating that this variable is very strongly and positively correlated with quality of healthcare received. This denotes that access to healthcare is very impactful in terms of increasing the quality of health in the country.

[^0]130/515

Equation of the Tangent Line

The tangent line to $f(x)$ at a has slope $f^{\prime}(a)$ and passes through the point $(a, f(a))$.

If $L(p)$ is the average life expectancy in an area with a density p of physicians, write the statement as a derivative: "a one unit increase in physician density leads to a 20.67 unit increase in life expectancy."

Tangent Line Equation - Theorem 2.3.2

The tangent line to the function $f(x)$ at point a is:

$$
(y-f(a))=f^{\prime}(a)(x-a)
$$

Point-Slope Formula

In general, a line with slope m passing through point $\left(x_{1}, y_{1}\right)$ has the equation:

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

Find the equation of the tangent line to the curve $f(x)=\sqrt{x}$ at $x=9$. (Recall $\frac{\mathrm{d}}{\mathrm{d} x}[\sqrt{x}]=\frac{1}{2 \sqrt{x}}$).

Now
You
0,0
0 Let $s(t)=3-0.8 t^{2}$. Then $s^{\prime}(t)=-1.6 t$. Find the equation for the tangent line to the function $s(t)$ when $t=1$.

Memorize

The tangent line to the function $f(x)$ at point a is:

$$
(y-f(a))=f^{\prime}(a)(x-a)
$$

Table of Contents

Derivatives of Lines

$$
f(x)=2 x-15
$$

The equation of the tangent line to $f(x)$ at $x=100$ is:
$f^{\prime}(1)=$
A. 0
B. 1
C. 2
D. -15
E. -13
$f^{\prime}(5)=$
$f^{\prime}(-13)=$
$g^{\prime}(1)=$
A. 0
B. 1
C. 2
D. 13

Adding or subtracting a constant to a function does not change its derivative.

We saw

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x}\left(3-0.8 t^{2}\right)\right|_{t=1}=-1.6
$$

So,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x}\left(10-0.8 t^{2}\right)\right|_{t=1}=
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\{f(x)+g(x)\}=
$$

$$
g(x)=13
$$

Constant Multiple of a Function

Let a be a constant.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\{a \cdot f(x)\}=
$$

Rules - Lemma 2.4.1

Suppose $f(x)$ and $g(x)$ are differentiable, and let c be a constant number. Then:

- $\frac{\mathrm{d}}{\mathrm{d} x}\{f(x)+g(x)\}=f^{\prime}(x)+g^{\prime}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x}\{f(x)-g(x)\}=f^{\prime}(x)-g^{\prime}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x}\{c f(x)\}=c f^{\prime}(x)$

For instance: let $f(x)=10((2 x-15)+13-\sqrt{x})$. Then $f^{\prime}(x)=$

Derivatives of Products

$$
\frac{d}{d x}\{x\}=1
$$

True or False:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\{2 x\} & =\frac{\mathrm{d}}{\mathrm{~d} x}\{x+x\} \\
& =[1]+[1] \\
& =2
\end{aligned}
$$

True or False:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{x^{2}\right\} & =\frac{\mathrm{d}}{\mathrm{~d} x}\{x \cdot x\} \\
& =[1] \cdot[1] \\
& =1
\end{aligned}
$$

What to do with Products?

Suppose $f(x)$ and $g(x)$ are differentiable functions of x. What about $f(x) g(x)$?

Product Rule - Theorem 2.4.3

For differentiable functions $f(x)$ and $g(x)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Example:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{2}\right]=
$$

Example: suppose $f(x)=3 x^{2}, f^{\prime}(x)=6 x, g(x)=\sin (x), g^{\prime}(x)=\cos (x)$.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[3 x^{2} \sin (x)\right]=
$$

Given $\quad \frac{\mathrm{d}}{\mathrm{d} x}[2 x+5]=2, \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\sin \left(x^{2}\right)\right]=2 x \cos \left(x^{2}\right), \quad \frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}\right]=2 x$

Now 10 , $f(x)=(2 x+5) \sin \left(x^{2}\right)$
You
A. $f^{\prime}(x)=(2)\left(2 x \cos \left(x^{2}\right)\right)(2 x)$
B. $f^{\prime}(x)=(2)\left(2 x \cos \left(x^{2}\right)\right)$
C. $f^{\prime}(x)=(2 x+5)(2)+\sin \left(x^{2}\right)\left(2 x \cos \left(x^{2}\right)\right)$
D. $f^{\prime}(x)=(2 x+5)\left(2 x \cos \left(x^{2}\right)\right)+(2) \sin \left(x^{2}\right)$
E. none of the above

Quotient Rule - Theorem 2.4.5

Let $f(x)$ and $g(x)$ be differentiable and $g(x) \neq 0$. Then:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

Mnemonic: Low d'high minus high d'low over lowlow.

Quotient Rule - Theorem 2.4.5

Let $f(x)$ and $g(x)$ be differentiable and $g(x) \neq 0$. Then:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

Mnemonic: Low d'high minus high d'low over lowlow.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\frac{5 x}{\sqrt{x}-1}\right\}=
$$

Quotient Rule - Theorem 2.4.5

Let $f(x)$ and $g(x)$ be differentiable and $g(x) \neq 0$. Then:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

Mnemonic: Low d'high minus high d'low over lowlow.
$\frac{\mathrm{d}}{\mathrm{d} x}\left\{\frac{2 x+5}{3 x-6}\right\}=$

150/515
NOW
You

$f(x)$	$=2 x+5$
$g(x)$	$=(2 x+5)(3 x-7)+25$
$h(x)$	$=\frac{2 x+5}{8 x-2}$
$j(x)$	$=\left(\frac{2 x+5}{8 x-2}\right)^{2}$

Rules

Product: $\frac{\mathrm{d}}{\mathrm{d} x}\{f(x) g(x)\}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$
Quotient: $\frac{\mathrm{d}}{\mathrm{d} x}\left\{\frac{f(x)}{g(x)}\right\}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}$

For which values of x is the tangent line to the curve horizontal?

153/515

More About the Product Rule

$\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{2}\right\}=\frac{\mathrm{d}}{\mathrm{d} x}\{x \cdot x\}=x(1)+x(1)$
$=2 x$
$\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{3}\right\}=\frac{\mathrm{d}}{\mathrm{d} x}\left\{x \cdot x^{2}\right\}$
$=(x)(2 x)+\left(x^{2}\right)(1)=3 x^{2}$
$\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{4}\right\}=\frac{\mathrm{d}}{\mathrm{d} x}\left\{x \cdot x^{3}\right\}$
$=x\left(3 x^{2}\right)+x^{3}(1)=4 x^{3}$

function	derivative
x	1
x^{2}	$2 x$
x^{3}	$3 x^{2}$
x^{4}	$4 x^{3}$
x^{30}	$30 x^{29}$
x^{n}	$n x^{n-1}$

Where are these functions defined?

The position of an object moving left and right at time $t, t \geq 0$, is given by

$$
s(t)=-t^{2}(t-2)
$$

where a positive position means it is to the right of its starting position, and a negative position means it is to the left. First it moves to the right, then it moves left forever.

What is the farthest point to the right that the object reaches?

CAUTIONARY TALE
WITH functions RAISED TO A POWER, IT'S MORE COMPLICATED.
Differentiate $(2 x+1)^{2}$

```
Power Rule - Corollary 2.6.17
\frac{d}{dx}{\mp@subsup{x}{}{a}}=a\mp@subsup{x}{}{a-1}\mathrm{ (where defined)}
```

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{3 x^{5}+7 x^{2}-x+15\right\}=
$$

Power Rule - Corollary 2.6.17

$\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{a}\right\}=a x^{a-1}$ (where defined)
Suppose a motorist is driving their car, and their position is given by $s(t)=10 t^{3}-90 t^{2}+180 t$ kilometres. At $t=1(t$ measured in hours $)$, a police officer notices they are driving erratically. The motorist claims to have simply suffered a lack of attention: they were in the act of pressing the brakes even as the officer noticed their speed.

At $t=1$, how fast was the motorist going, and were they pressing the gas or the brake?

Challenge: What about $t=2$?

Power Rule - Corollary 2.6.17
$\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{a}\right\}=a x^{a-1}$ (where defined)
Differentiate $\frac{\left(x^{4}+1\right)(\sqrt[3]{x}+\sqrt[4]{x})}{2 x+5}$

Power Rule - Corollary 2.6.17
 $\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{a}\right\}=a x^{a-1}$ (where defined)

Recall that a sphere of radius r has volume $V=\frac{4}{3} \pi r^{3}$.
Suppose you are winding twine into a gigantic twine ball, filming the process, and trying to make a viral video. You can wrap one cubic meter of twine per hour. (In other words, when we have V cubic meters of twine, we're at time V hours.) How fast is the radius of your spherical twine ball increasing?

TABLE OF CONTENTS

161/515

EXPONENTIAL FUNCTIONS

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{17^{x}\right\}=
$$

Exponential Functions

$f(x)$ is always increasing, so $f^{\prime}(x)$ is always positive.
$f^{\prime}(x)$ might look similar to $f(x)$.

162/515

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{17^{x}\right\}=17^{x} \cdot \underbrace{\lim _{h \rightarrow 0} \frac{\left(17^{h}-1\right)}{h}}_{\text {constant }}
$$

Given what you know about $\frac{\mathrm{d}}{\mathrm{d} x}\left\{17^{x}\right\}$, is it possible that
$\lim _{h \rightarrow 0} \frac{17^{h}-1}{h}=0$?
A. Sure, there's no reason we've seen that would make it impossible.
B. No, it couldn't be 0 , that wouldn't make sense.
C. I do not feel equipped to answer this question.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{17^{x}\right\}=17^{x} \cdot \underbrace{\lim _{h \rightarrow 0} \frac{\left(17^{h}-1\right)}{h}}_{\text {constant }}
$$

Given what you know about $\frac{\mathrm{d}}{\mathrm{d} x}\left\{17^{x}\right\}$, is it possible that $\lim _{h \rightarrow 0} \frac{17^{h}-1}{h}=\infty$?
A. Sure, there's no reason we've seen that would make it impossible.
B. No, it couldn't be ∞, that wouldn't make sense.
C. I do not feel equipped to answer this question.

165/515

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{17^{x}\right\} & =\lim _{h \rightarrow 0} \frac{17^{x+h}-17^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{17^{x} 17^{h}-17^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{17^{x}\left(17^{h}-1\right)}{h} \\
& =17^{x} \lim _{h \rightarrow 0} \frac{\left(17^{h}-1\right)}{h}
\end{aligned}
$$

In general, for any positive number a,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{a^{x}\right\}=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{17^{x}\right\}=17^{x} \cdot \underbrace{\lim _{h \rightarrow 0} \frac{\left(17^{h}-1\right)}{h}}_{\text {constant }}
$$

h	$\frac{17^{h}-1}{h}$
0.001	2.83723068608
0.00001	2.83325347992
0.0000001	2.83321374583
0.000000001	2.83321344163

166/515 Example 2.7.1

EXPONENTIAL FUNCTIONS

Exponential Functions

Things to Have Memorized

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{e^{x}\right\}=e^{x}
$$

When a is any constant,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{a^{x}\right\}=a^{x} \log _{e}(a)
$$

Let $f(x)=\frac{e^{x}}{3 x^{5}}$. When is the tangent line to $f(x)$ horizontal?

Evaluate $\frac{d}{d x}\left\{e^{3 x}\right\}$

Suppose the deficit, in millions, of a fictitious country is given by

$$
f(x)=e^{x}\left(4 x^{3}-12 x^{2}+14 x-4\right)
$$

where x is the number of years since the current leader took office. Suppose the leader has been in power for exactly two years.

1. Is the deficit increasing or decreasing?
2. Is the rate at which the deficit is growing increasing or decreasing?

Table of Contents

Basic Trig Functions

$$
\begin{aligned}
& \sin (\theta)=\frac{\text { opp }}{\text { hyp }} \\
& \cos (\theta)=\frac{\text { adj }}{\text { hyp }} \\
& \tan (\theta)=\frac{\text { opp }}{\text { adj }}
\end{aligned}
$$

$$
\csc (\theta)=\frac{1}{\sin (\theta)}
$$

$$
\sec (\theta)=\frac{1}{\cos (\theta)}
$$

$$
\cot (\theta)=\frac{1}{\tan (\theta)}
$$

COMMONLY USED FACTS

- Graphs of sine, cosine, tangent
- Sine, cosine, and tangent of reference angles: $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$
- How to use reference angles to find sine, cosine and tangent of other angles
- Identities: $\sin ^{2} x+\cos ^{2} x=1$; $\quad \tan ^{2} x+1=\sec ^{2} x$;
$\sin ^{2} x=\frac{1-\cos (2 x)}{2} ; \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}$
- Conversion between radians and degrees

CLP-1 has an appendix on high school trigonometry that you should be familiar with.

177/515

Derivative of Sine

Consider the derivative of $f(x)=\sin (x)$.

Reference Angles

178/515

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\{\sin x\}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x)(\cos (h)-1)}{h}+\lim _{h \rightarrow 0} \frac{\cos (x) \sin (h)}{h} \\
& =\sin (x) \lim _{h \rightarrow 0} \frac{\cos (0+h)-\cos (0)}{h}+\cos (x) \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \\
& =\left.\sin (x) \frac{\mathrm{d}}{\mathrm{~d} x}\{\cos (x)\}\right|_{x=0}+\cos (x) \lim _{h \rightarrow 0} \frac{\sin (h)}{h}
\end{aligned}
$$

since $\cos (x)$ has a horizontal tangent, and hence has derivative zero, at $x=0$.

Derivatives of Sine and Cosine

¿From before,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\{\sin (x)\}=\cos (x) \cdot \lim _{h \rightarrow 0} \frac{\sin (h)}{h}=\cos (x)
$$

Derivative of Cosine

Now for the derivative of cos. We already know the derivative of sin, and it is easy to convert between \sin and cos using trig identities.

$$
\begin{aligned}
& \sin x=\frac{b}{c}=\cos \left(\frac{\pi}{2}-x\right) \\
& \cos x=\frac{a}{c}=\sin \left(\frac{\pi}{2}-x\right)
\end{aligned}
$$

When we use radians:

Derivatives of Trig Functions

```
\frac{d}{dx}{\operatorname{sin}(x)}=\operatorname{cos}(x)
d
d
```

```
\frac{d}{d}x}{\operatorname{sec}(x)}
```

\frac{d}{d}x}{\operatorname{sec}(x)}
\frac{d}{dx}{\operatorname{csc}(x)}=
\frac{d}{dx}{\operatorname{csc}(x)}=
\frac{d}{d}x}{\operatorname{cot}(x)}

```
\frac{d}{d}x}{\operatorname{cot}(x)}
```

Honorable Mention

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Other Trig Functions

$y=\sin x$, radians

$y=\sin x$, degrees

Other Trig Functions

$$
\begin{aligned}
& \sec (x)=\frac{1}{\cos (x)} \\
& \frac{\mathrm{d}}{\mathrm{~d} x}[\sec (x)]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{1}{\cos (x)}\right] \\
&=\frac{\cos (x)(0)-(1)(-\sin (x))}{\cos ^{2}(x)} \\
&=\frac{\sin (x)}{\cos ^{2}(x)} \\
&=\frac{1}{\cos (x)} \frac{\sin (x)}{\cos (x)} \\
&=\sec (x) \tan (x)
\end{aligned}
$$

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

Other Trig Functions

$$
\begin{aligned}
& \csc (x)=\frac{1}{\sin (x)} \\
& \frac{\mathrm{d}}{\mathrm{~d} x}[\csc (x)]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{1}{\sin (x)}\right] \\
&=\frac{\sin (x)(0)-(1) \cos (x)}{\sin ^{2}(x)} \\
&=\frac{-\cos (x)}{\sin ^{2}(x)} \\
&=\frac{-1}{\sin (x)} \frac{\cos (x)}{\sin (x)} \\
&=-\csc (x) \cot (x)
\end{aligned}
$$

OTHER TRIG FUNCTIONS

$$
\cot (x)=\frac{\cos (x)}{\sin (x)}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[\cot (x)]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\cos (x)}{\sin (x)}\right]
$$

$$
=\frac{\sin (x)(-\sin (x))-\cos (x) \cos (x)}{\sin ^{2}(x)}
$$

$$
=\frac{-1}{\sin ^{2}(x)}
$$

$$
=-\csc ^{2}(x)
$$

MEMORIZE

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\{\sin (x)\} & =\cos (x) & & \frac{\mathrm{d}}{\mathrm{~d} x}\{\sec (x)\}=\sec (x) \tan (x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\{\cos (x)\} & =-\sin (x) & & \frac{\mathrm{d}}{\mathrm{~d} x}\{\csc (x)\}=-\csc (x) \cot (x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\{\tan (x)\} & =\sec ^{2}(x) & & \frac{\mathrm{d}}{\mathrm{~d} x}\{\cot (x)\}=-\csc ^{2}(x) \\
\lim _{x \rightarrow 0} \frac{\sin x}{x} & =1 & &
\end{aligned}
$$

189/515
Let $f(x)=\frac{x \tan \left(x^{2}+7\right)}{15 e^{x}}$. Use the definition of the derivative to find $f^{\prime}(0)$.

Differentiate $\left(e^{x}+\cot x\right)\left(5 x^{6}-\csc x\right)$.

Let $h(x)=\left\{\begin{array}{lll}\frac{\sin x}{x} & , & x<0 \\ \frac{a x+b}{\cos x} & , & x \geq 0\end{array}\right.$
Which values of a and b make $h(x)$ continuous at $x=0$?

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \cos \left(\frac{1}{x}\right) & , \quad x \neq 0 \\
0, & x=0
\end{array}\right.
$$

Is $f(x)$ differentiable at $x=0$?

$$
g(x)=\left\{\begin{array}{cl}
e^{\frac{\sin x}{x}} & , \quad x<0 \\
(x-a)^{2} & , \quad x \geq 0
\end{array}\right.
$$

What value(s) of a makes $g(x)$ continuous at $x=0$?

Practice and Review

194/515

A ladder 3 meters long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, measured in radians, and let y be the height of the top of the ladder. If the ladder slides away from the wall, how fast does y change with respect to θ ?
When is the top of the ladder sinking the fastest? The slowest?

Suppose a point in the plane that is r centimetres from the origin, at an angle of $\theta\left(0 \leq \theta \leq \frac{\pi}{2}\right)$, is rotated $\pi / 2$ radians. What is its new coordinate (x, y) ? If the point rotates at a constant rate of a radians per second, when is the x coordinate changing fastest and slowest with respect to θ ?

97/515
INTUITION: $\sin x$ VERSUS $\sin (2 x)$

Kelp Population

k kelp population
u urchin population
o otter population
p public policy
$k(u) \quad k(u(0))$
$k(u(o(p)))$

These are examples of compound functions.

Should $\frac{\mathrm{d}}{\mathrm{d} o} k(u(o))$ be positive or negative?
A. positive
B. negative
C. I'm not sure

Should $k^{\prime}(u)$ be positive or negative?
A. positive
B. negative
C. I'm not sure

Differentiating Compound Functions

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\{f(g(x))\} & =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h}\left(\frac{g(x+h)-g(x)}{g(x+h)-g(x)}\right) \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \cdot \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \cdot \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x)}{g(x+h)-g(x)} \cdot g^{\prime}(x)
\end{aligned}
$$

Set $H=g(x+h)-g(x)$. As $h \rightarrow 0$, we also have $H \rightarrow 0$. So

$$
\begin{aligned}
& =\lim _{H \rightarrow 0} \frac{f(g(x)+H)-f(g(x))}{H} \cdot g^{\prime}(x) \\
& =f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

202/515

Chain Rule

Suppose f and g are differentiable functions. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\{f(g(x))\}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} g}(g(x)) \frac{\mathrm{d} g}{\mathrm{~d} x}(x)
$$

Example: suppose $F(x)=\sin \left(e^{x}+x^{2}\right)$.

In the case of kelp, $\frac{\mathrm{d}}{\mathrm{d}_{0}} k(u(o))=\frac{\mathrm{d} k}{\mathrm{~d} u}(u(o)) \frac{\mathrm{d} u}{\mathrm{~d} 0}(o)$

$$
F(v)=\left(\frac{v}{v^{3}+1}\right)^{6}
$$

Now
You $=$ an
Not $f(x)=\left(10^{x}+\csc x\right)^{1 / 2}$. Find $f^{\prime}(x)$.

Evaluate $\frac{\mathrm{d}}{\mathrm{d} x}\left\{\frac{1}{x+\frac{1}{x+\frac{1}{x}}}\right\}$

209/515

Invertibility Game

- A function $y=f(x)$ is known to both players
- Player A chooses a secret value x in the domain of $f(x)$
- Player A tells Player B what $f(x)$ is
- Player B tries to guess Player A's x-value.

Round 1: $f(x)=2 x$

Round 2: $f(x)=\sqrt[3]{x}$

Round 3: $f(x)=|x|$

Round 4: $f(x)=\sin x$

TABLE OF CONTENTS

Functions are Maps

Functions are Maps

	A. invertible

RELATIONSHIP BETWEEN $f(x)$ AND $f^{-1}(x)$

Let f be an invertible function.
What is $f^{-1}(f(x))$?
A. x
B. 1
C. 0
D. not sure

$$
\text { Let } f(x)=x^{2}-x
$$

1. Sketch a graph of $f(x)$, and choose a (large) domain over which it is invertible.
2. For the domain you chose, evaluate $f^{-1}(20)$.
3. For the domain you chose, evaluate $f^{-1}(x)$.
4. What are the domain and range of $f^{-1}(x)$? What are the (restricted) domain and range of $f(x)$?

Invertibility

In order for a function to be invertible, different x values cannot map to the same y value.
We call such a function one-to-one, or injective.
Suppose $f(x)=\sqrt[3]{19+x^{3}}$. What is $f^{-1}(3)$? (simplify your answer)

What is $f^{-1}(10)$? (do not simplify)

What is $f^{-1}(x)$?

218/515 Definition 0.6.

1. Suppose $0<x<1$. Then $\log _{e}(x)$ is...
2. Suppose $-1<x<0$. Then $\log _{e}(x)$ is...
3. Suppose $e<x$. Then $\log _{e}(x)$ is...
A. positive
B. negative
C. greater than one
D. less than one
E. undefined

INVERTIBILITY GAME: $f(x)=e^{x}$
$f^{-1}(x)=\log _{e} x$

- I'm thinking of an x. Your clue: $f(x)=e$. What is my x ?
- I'm thinking of an x. Your clue: $f(x)=1$. What is my x ?
- I'm thinking of an x. Your clue: $f(x)=\frac{1}{e}$. What is my x ?
- I'm thinking of an x. Your clue: $f(x)=e^{3}$. What is my x ?
- I'm thinking of an x. Your clue: $f(x)=0$. What is my x ?

22,

Exponents and Logarithms

$$
\begin{array}{cc|c|cc}
f(x)=e^{x} & f^{-1}(x)=\log _{e}(x)=\ln (x)=\log (x) \\
x & e^{x} & e \text { fact } \leftrightarrow \log _{e} \text { fact } & x & \log _{e}(x) \\
\hline 0 & 1 & \\
1 & e & & \\
-1 & \frac{1}{e} & \\
n & e^{n} &
\end{array}
$$

225/515

Logarithm Rules

Let A and B be positive, and let n be any real number.
$\log (A \cdot B)=\log (A)+\log (B)$
Proof: $\log (A \cdot B)=\log \left(e^{\log A} e^{\log B}\right)=\log \left(e^{\log A+\log B}\right)=\log (A)+\log (B)$
$\log (A / B)=\log (A)-\log (B)$
Proof: $\log (A / B)=\log \left(\frac{e^{\log A}}{e^{\log B}}\right)=\log \left(e^{\log A-\log B}\right)=\log A-\log B$
$\log \left(A^{n}\right)=n \log (A)$
Proof: $\log \left(A^{n}\right)=\log \left(\left(e^{\log A}\right)^{n}\right)=\log \left(e^{n \log A}\right)=n \log A$

LOGS OF OTHER BASES: $\log _{n}(x)$ IS THE INVERSE OF n^{x}

$\log _{10} 10^{8}=$
A. 0
B. 8
C. 10
D. other
$\log _{2} 16=$
A. 1
B. 2
C. 3
D. other

226/515

Logarithm Rules

Let A and B be positive, and let n be any real number.
$\log (A \cdot B)=\log (A)+\log (B)$
$\log (A / B)=\log (A)-\log (B)$
$\log \left(A^{n}\right)=n \log (A)$

Write as a single logarithm:
$f(x)=\log \left(\frac{10}{x^{2}}\right)+2 \log x+\log (10+x)$

Base CHANGE

$$
\begin{aligned}
\text { Fact: } \quad b^{\log _{b}(a)} & =a \\
\Rightarrow \log \left(b^{\log _{b}(a)}\right) & =\log (a) \\
\Rightarrow \log _{b}(a) \log (b) & =\log (a) \\
\Rightarrow \log _{b}(a) & =\frac{\log (a)}{\log (b)}
\end{aligned}
$$

In general, for positive a, b, and c :

$$
\log _{b}(a)=\frac{\log _{c}(a)}{\log _{c}(b)}
$$

In general, for positive a, b, and c :

$$
\log _{b}(a)=\frac{\log _{c}(a)}{\log _{c}(b)}
$$

Suppose your calculator can only compute logarithms base 10. What would you enter to calculate $\log (17)$?

Suppose your calculator can only compute natural logarithms. What would you enter to calculate $\log _{2}(57)$?

Suppose your calculator can only compute logarithms base 2. What would you enter to calculate $\log (2)$?

Table of Contents

Differentiating the Natural Logarithm

Calculate $\frac{d}{d x}\left\{\log _{e} x\right\}$.
One Weird Trick:

$$
\begin{aligned}
x & =e^{\log _{e} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\{x\} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left\{e^{\log _{e} x}\right\} \\
1 & =e^{\log _{e} x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left\{\log _{e} x\right\}=x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left\{\log _{e} x\right\} \\
\frac{1}{x} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\log _{e} x\right\}
\end{aligned}
$$

Derivative of Natural Logarithm

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\log _{e}|x|\right\}=\frac{1}{x} \quad(x \neq 0)
$$

Differentiate: $f(x)=\log _{e}\left|x^{2}+1\right|$

LOGARITHMIC DIfFERENTIATION - A FANCY TRICK

- $\log (f \cdot g)=\log f+\log g$
multiplication turns into addition
- $\log \left(\frac{f}{g}\right)=\log f-\log g$
division turns into subtraction
- $\log \left(f^{g}\right)=g \log f$
exponentiation turns into multiplication
We can exploit these properties to differentiate!

$f(x)=\frac{\left(x^{8}-e^{x}\right)(\sqrt{x}+5)}{\csc ^{5} x}$	$f(x)=\left(x^{2}+17\right)\left(32 x^{5}-8\right)\left(x^{98}-x^{57}+32 x^{2}\right)^{4}\left(32 x^{10}-10 x^{32}\right)$ Find $f^{\prime}(x)$.
TABLE OF CONTENTS	Implicitly Defined Functions
	$y^{2}+x^{2}+x y+x^{2} y=1$ Which of the following points are on the curve? $(0,1),(0,-1),(0,0),(1,1)$ If $x=-3$, what is y ?

Still has a slope: $\frac{\Delta y}{\Delta x}$
Locally, y is still a function of x.

245/515

$$
\begin{gathered}
y^{2}+x^{2}+x y+x^{2} y=1 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2 x+y+2 x y}{2 y+x+x^{2}}
\end{gathered}
$$

Necessarily, $\frac{\mathrm{d} y}{\mathrm{~d} x}$ depends on both y and x. Why?

$$
y^{2}+x^{2}+x y+x^{2} y=1
$$

Consider y as a function of x. Can we find $\frac{d y}{d x}$?
$\frac{\mathrm{d}}{\mathrm{d} x}[y]=$
$\frac{\mathrm{d}}{\mathrm{d} x}[x]=$
$\frac{\mathrm{d}}{\mathrm{d} x}[1]=$

INVERTIBILITY GAME

I'm thinking of a number x. Your hint: $\sin (x)=0$. What number am I thinking of?

I'm thinking of a number x, and x is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. Your hint: $\sin (x)=0$. What number am I thinking of?

253/515
ARCSINE
Reference Angles

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

Arcsine

$\arcsin x$ is the (unique) number θ such that:

- $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, and
- $\sin \theta=x$

254/515 Example 2.12.1

Arccosine

$\arccos (x)$ is the inverse of $\cos x$ restricted to $[0, \pi]$.
$\arccos (x)$ is the (unique) number θ such that:

- $\cos (\theta)=x$ and
- $0 \leq \theta \leq \pi$

ARCTANGENT

 $\arctan (x)=\theta$ means:
 (1) $\tan (\theta)=x$ and
 (2) $-\pi / 2<\theta<\pi / 2$

257/515 Definition 2.12.3

Arcsecant, ARCSINE, AND ARCCOTANGENT

$\operatorname{arcsec}(x)=$

[^1]$$
\operatorname{arcsec}(x)=\arccos \left(\frac{1}{x}\right)
$$

The domain of $\arccos (y)$ is $-1 \leq y \leq 1$, so the domain of $\operatorname{arcsec}(y)$ is

$$
\operatorname{arccsc}(x)=\arcsin \left(\frac{1}{x}\right)
$$

Domain of $\arcsin (y)$ is $-1 \leq y \leq 1$, so the domain of $\operatorname{arccsc}(x)$ is

$$
\operatorname{arccot}(x)=\arctan \left(\frac{1}{x}\right)
$$

Domain of $\arctan (x)$ is all real numbers, so the domain $\operatorname{of} \operatorname{arccot}(x)$ is

$y=\arctan x$
Find $\frac{d y}{d x}$

$$
y=\arccos x
$$

Find $\frac{d y}{d x}$.

Derivatives of Inverse Trigonometric Functions -	
Theorem 2.12.7	Be able to derive:
Memorize:	$\frac{\mathrm{d}}{\mathrm{d} x}[\operatorname{arccsc} x]=-\frac{1}{\|x\| \sqrt{x^{2}-1}}$
$\frac{\mathrm{~d}}{\mathrm{~d} x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{\mathrm{~d}}{\mathrm{~d} x}[\operatorname{arcsec} x]=\frac{1}{\|x\| \sqrt{x^{2}-1}}$
$\frac{\mathrm{~d}}{\mathrm{~d} x}[\arccos x]=-\frac{1}{\sqrt{1-x^{2}}}$	$\frac{\mathrm{~d}}{\mathrm{~d} x}[\operatorname{arccot} x]=-\frac{1}{1+x^{2}}$
$\frac{\mathrm{~d}}{\mathrm{~d} x}[\arcsin x]=\frac{1}{1+x^{2}}$	

To differentiate arcsecant, arccosecant, and arccotangent, you can use the chain rule!

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[\operatorname{arccsc}(x)]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\arcsin \left(\frac{1}{x}\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\arcsin \left(x^{-1}\right)\right]
$$

266/515 Example 2.12.6

Table of Contents

ROLLE'S THEOREM

Rolle's Theorem - Theorem 2.13.1

Let a and b be real numbers, with $a<b$. And let f be a function with the properties:

- $f(x)$ is continuous for every x with $a \leq x \leq b$;
- $f(x)$ is differentiable when $a<x<b$;
- and $f(a)=f(b)$.

Then there exists a number c with $a<c<b$ such that

$$
f^{\prime}(c)=0
$$

Rolle's Theorem - Theorem 2.13.1

Let $f(x)$ be continuous on the interval $[a, b]$, differentiable on (a, b), and let $f(a)=f(b)$. Then there is a number c strictly between a and b such that $f^{\prime}(c)=0$.

Example: Let $f(x)=x^{3}-2 x^{2}+1$, and observe $f(2)=f(0)=1$. Since $f(x)$ is a polynomial, it is continuous and differentiable everywhere.

Rolle's Theorem - Theorem 2.13.1

Let $f(x)$ be continuous on the interval $[a, b]$, differentiable on (a, b), and let $f(a)=f(b)$. Then there is a number c strictly between a and b such that $f^{\prime}(c)=0$.

How many different values of x between a and b have $f^{\prime}(x)=0$?
A. 0 or 1
B. 1
C. 0,1 , or more
D. 1 or more
E. I'm not sure

Rolle's Theorem - Theorem 2.13.1

Let $f(x)$ be continuous on the interval $[a, b]$, differentiable on (a, b), and let $f(a)=f(b)$. Then there is a number c strictly between a and b such that $f^{\prime}(c)=0$.

Suppose $f(x)$ is continuous and differentiable for all real numbers, and $f(x)$ has precisely seven roots, all different. How many roots does $f^{\prime}(x)$ have?
A. precisely six
B. precisely seven
C. at most seven
D. at least six

Rolle's Theorem - Theorem 2.13.1

Let $f(x)$ be continuous on the interval $[a, b]$, differentiable on (a, b), and let $f(a)=f(b)$. Then there is a number c strictly between a and b such that $f^{\prime}(c)=0$.

Suppose $f(x)$ is continuous and differentiable for all real numbers, and there are precisely three places where $f^{\prime}(x)=0$.
How many distinct roots does
$f(x)$ have?
D. at least four
A. at most three
B. at most four
C. at least three

Rolle's Theorem - Theorem 2.13.1

Let $f(x)$ be continuous on the interval $[a, b]$, differentiable on (a, b), and let $f(a)=f(b)$. Then there is a number c strictly between a and b such that $f^{\prime}(c)=0$.

Suppose $f(x)$ is continuous and differentiable for all real numbers, and $f^{\prime}(x)$ is also continuous and differentiable for all real numbers, and $f(x)$ has precisely seven roots, all different. How many roots does $f^{\prime \prime}(x)$ have?
A. precisely six
B. precisely five
C. at most five
D. at least five

Rolle's Theorem - Theorem 2.13.1

Let $f(x)$ be continuous on the interval $[a, b]$, differentiable on (a, b), and let $f(a)=f(b)$. Then there is a number c strictly between a and b such that $f^{\prime}(c)=0$.

Suppose $f(x)$ is continuous and differentiable for all real numbers, and $f^{\prime}(x)=0$ for precisely three values of x. How many distinct values x exist with $f(x)=17$?
A. at most three
B. at most four
C. at least three
D. at least four

Applications of Rolle's Theorem

Prove that the function $f(x)=x^{3}+x-1$ has at most one real root.
How would you show that $f(x)$ has precisely one real root?

Use Rolle's Theorem to show that the function $f(x)=\frac{1}{3} x^{3}+3 x^{2}+9 x-3$ has at most two distinct real roots.

Average Rate of CHANGE

 What is the average rate of change of $f(x)$ from $x=1$ to $x=3$?
 A. 0
 B. 1
 C. 2
 D. 4
 E. I'm not sure

Average Rate of Change

What is the average rate of
change of $f(x)$ from $x=2$ to

$x=7 ?$ | A. 0 |
| :--- |
| B. 3 |
| C. 5 |
| D. 15 |
| E. I'm not sure |

Rolle's Theorem and Average Rate of Change

Suppose $f(x)$ is continuous on the interval $[a, b]$, differentiable on the interval (a, b), and $f(a)=f(b)$. Then there exists a number c strictly between a and b such that

$$
f^{\prime}(c)=0=\frac{f(b)-f(a)}{b-a}
$$

So there exists a point where the derivative is the same as the average rate of change.

Suppose you are driving along a long, straight highway with no shortcuts. The speed limit is 100 kph . A police officer notices your car going 90 kph , and uploads your plate and the time they saw you to their database. 150 km down this same straight road, 75 minutes later, another police officer notices your car going 85 kph , and uploads your plates to the database. Then they pull you over, and give you a speeding ticket. Why were they justified?
$\therefore \sigma^{\circ}$

According to this website, Canada geese may fly 1500 miles in a single day under favorable conditions. It also says their top speed is around 70 mph . Does this seem like a typo? (If it contradicts the Mean Value Theorem, it's probably a typo.)

285/515

Suppose you want to download a file that is 3000 MB (slightly under 3GB). Your internet provider guarantees you that your download speeds will always be between 1 MBPS (MB per second) and 5 MBPS (because you bought the cheap plan). Using the Mean Value Theorem, give an upper and lower bound for how long the download can take (assuming your providers aren't lying, and your device is performing adequately).

The record for fastest wheel-driven land speed is around $700 \mathrm{kph} .^{2}$
However, non-wheel driven cars (such as those powered by jet engines) have achieved higher speeds. ${ }^{3}$
Suppose a driver of a jet-powered car starts a 10 km race at 12:00, and finishes at 12:01. Did they beat 700 kph ?

[^2]286/515

Suppose $1 \leq f^{\prime}(t) \leq 5$ for all values of t, and $f(0)=0$. What are the possible solutions to $f(t)=3000$?
Notice: since the derivative exists for all real numbers, $f(x)$ is differentiable and continuous for all real numbers!

Corollary to the MVT

Let $a<b$ be numbers in the domain of $f(x)$ and $g(x)$, which are continuous over $[a, b]$ and differentiable over (a, b).

If $f^{\prime}(x)=0$ for all x in (a, b), then

If $f(c) \neq f(d)$, then $\frac{f(d)-f(c)}{d-c} \neq 0$, so $f^{\prime}(e) \neq$ 0 for some e.

Corollary to the MVT

Let $a<b$ be numbers in the domain of $f(x)$ and $g(x)$, which are continuous over $[a, b]$ and differentiable over (a, b).

If $f^{\prime}(x)>0$ for all x in (a, b), then

If $f(c)>f(d)$ and $c<d$, then $\frac{f(d)-f(c)}{d-c}=$ $\frac{(\text { negative })}{(\text { positive })}<0$. Then $f^{\prime}(e)<0$ for some e between c and d.

Corollary to the MVT

Let $a<b$ be numbers in the domain of $f(x)$ and $g(x)$, which are continuous over $[a, b]$ and differentiable over (a, b).

If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), then

Define a new function $k(x)=f(x)-g(x)$. Then $k^{\prime}(x)=0$ everywhere, so (by the last corollary) $k(x)=A$ for some constant A.

Corollary to the MVT

Let $a<b$ be numbers in the domain of $f(x)$ and $g(x)$, which are continuous over $[a, b]$ and differentiable over (a, b).

If $f^{\prime}(x)<0$ for all x in (a, b), then

If $f(c)<f(d)$ and $c<d$, then $\frac{f(d)-f(c)}{d-c}=$ $\frac{(\text { positive })}{(\text { positive })}>0$. Then $f^{\prime}(e)>0$ for some e between c and d.

Mean Value Theorem - Theorem 2.13.4

Let $f(x)$ be continuous on the interval $[a, b]$ and differentiable on (a, b). Then there is a number c strictly between a and b such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

WARNING: The MVT has two hypotheses.

- $f(x)$ has to be continuous on $[a, b]$.
- $f(x)$ has to be differentiable on (a, b).

If either of these hypotheses are violated, the conclusion of the MVT can fail. Here are two examples.

Mean Value Theorem - Theorem 2.13.4

Let $f(x)$ be continuous on the interval $[a, b]$ and differentiable on (a, b) Then there is a number c strictly between a and b such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example: Let $a=0, b=1$ and $f(x)=\left\{\begin{array}{ll}0 & \text { if } x \leq 0 \\ 1 & \text { if } x>0\end{array}\right.$.

Mean Value Theorem - Theorem 2.13.4

Let $f(x)$ be continuous on the interval $[a, b]$ and differentiable on (a, b). Then there is a number c strictly between a and b such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example: Let $a=-1, b=1$ and $f(x)=|x|$.

TABLE OF CONTENTS

Higher Order Derivatives

Evaluate $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{\mathrm{~d}}{\mathrm{~d} x}\left[x^{5}-2 x^{2}+3\right]\right]$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{5}-2 x^{2}+3\right]=
$$

Notation 2.14.1

The derivative of a derivative is called the second derivative, written

$$
f^{\prime \prime}(x) \quad \text { or } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}(x)
$$

Similarly, the derivative of a second derivative is a third derivative, etc.

297/515

Typical Example: Acceleration

- Velocity: rate of change of position
- Acceleration: rate of change of velocity.

The position of an object at time t is given by $s(t)=t(5-t)$. Time is measured in seconds, and position is measured in metres.

1. Sketch the graph giving the position of the object.
2. What is the velocity of the object when $t=1$? Include units.
3. What is the acceleration of the object when $t=1$? Include units.

Notation 2.14.1

- $f^{\prime \prime}(x)$ and $f^{(2)}(x)$ and $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}(x)$ all mean $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right)$
- $f^{\prime \prime \prime}(x)$ and $f^{(3)}(x)$ and $\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}(x)$ all mean $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right)\right)$
- $f^{(4)}(x)$ and $\frac{\mathrm{d}^{4} f}{\mathrm{~d} x^{4}}(x)$ both mean $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right)\right)\right)$
- and so on.

CONCEPT CHECK

True or False: If $f^{\prime}(1)=18$, then $f^{\prime \prime}(1)=0$,
since the $\frac{d}{d x}\{18\}=0$.

Which of the following is always true of a QUADRATIC polynomial $f(x)$?
A. $f(0)=0$
B. $f^{\prime}(0)=0$
C. $f^{\prime \prime}(0)=0$
D. $f^{\prime \prime \prime}(0)=0$
E. $f^{(4)}(0)=0$

Which of the following is always true of a CUBIC polynomial $f(x)$?
A. $f(0)=0$
B. $f^{\prime}(0)=0$
C. $f^{\prime \prime}(0)=0$
D. $f^{\prime \prime \prime}(0)=0$
E. $f^{(4)}(0)=0$

IMPLICIT DIFFERENTIATION

Suppose $y(x)$ is a function such that

$$
y(x)=y^{3} x+x^{2}-1
$$

Find $y^{\prime \prime}(x)$ at the point $(-2,1)$.

The position of a unicyclist along a tightrope is given by

$$
s(t)=t^{3}-3 t^{2}-9 t+10
$$

where $s(t)$ gives the distance in meters to the right of the middle of the tightrope, and t is measured in seconds, $-2 \leq t \leq 4$.

Describe the unicyclist's motion: when they are moving right or left; when they are moving fastest and slowest; and how far to the right or left of centre they travel.

Table of Contents

A solution in a beaker is undergoing a chemical reaction, and its temperature (in degrees Celsius) at t seconds from noon is given by

$$
T(t)=t^{3}+3 t^{2}+4 t-273
$$

1. When is the reaction increasing the temperature, and when is it decreasing the temperature?
2. What is the slowest rate of change of the temperature?

You roll a magnetic marble across the floor towards a metal fridge, giving it an initial velocity of 50 centimetres per second. The magnet imparts an acceleration on the magnet of 1 meter per second per second. If the magnet hits the fridge after 2 seconds, how far away was it when you rolled it?

The deceleration of a particular car while braking is $9 \mathrm{~m} / \mathrm{s}^{2}$.

1. Suppose the car needs to stop in 30 m . How fast can it be going? (Give your answer in kph.)
2. Suppose the car needs to stop in 50 m . How fast can it be going? (Give your answer in kph .)

Suppose your brakes decelerate your car at a constant rate. That is, d meters per second per second, for some constant d.
Is it true that if you double your speed, you double your stopping time?

Related Rates - Introduction

"Related rates" problems involve finding the rate of change of one quantity, based on the rate of change of a related quantity.

309/515

Related rates problems often involve some kind of geometric or trigonometric modeling

A garden hose can pump out a cubic meter of water in about 20 minutes. Suppose you're filling up a rectangular backyard pool, 3 meters wide and 6 meters long, with a garden hose. How fast is the water rising?

Suppose P and Q are quantities that are changing over time, t. Suppose they are related by the equation

$$
3 P^{2}=2 Q^{2}+Q+3
$$

If $\frac{d P}{d t}(t)=5$ when $P(t)=1$ and $Q(t)=0$, then what is $\frac{d Q}{d t}$ at that
time?

310/515 Example 3.2.3

Solving Related Rates

1. Draw a Picture
2. Write what you know, and what you want to know. Note units.
3. Relate all your relevant variables in one equation.
4. Differentiate both sides (with respect to the appropriate variable!)
5. Solve for what you want.

A weight is attached to a rope, which is attached to a pulley on a boat, at water level. The weight is taken 8 (horizontal) metres from its attachment point on the boat, then dropped in the water.
The weight sinks straight down. The rope stays taught as it is let out at a constant rate of one metre per second, and two seconds have passed. How fast is the weight descending?

A sprinkler is 3 m from a long, straight wall. The sprinkler sprays water in a circle, making three revolutions per minute. Let P be the point on the wall closest to the sprinkler. The water hits the wall at some spot, and that spot moves as the sprinkler rotates. When the spot where the water hits the wall is 1 m away from P, how fast is the spot moving horizontally?
(You may assume the water travels from the sprinkler to the wall instantaneously.)

You are pouring water through a funnel with an extremely small hole. The funnel lets water out at 100 mL per second, and you are pouring water into the funnel at 300 mL per second. The funnel is shaped like a cone with height 20 cm and with the diameter at the top also 20 cm . (Ignore the hole in the bottom.) How fast is the height of the water in the funnel rising when it is 10 cm high?

A cone with radius r and height h has volume $\frac{\pi}{3} r^{2} h$.

314/515

A roller coaster has a track shaped in part like the folium of Descartes: $x^{3}+y^{3}=6 x y$. When it is at the position $(3,3)$, its horizontal position is changing at 2 units per second in the negative direction. How fast is its vertical position changing?

Two dogs are tied with elastic leashes to a lamp post that is 2 metres from a straight road. At first, both dogs are on the road, at the closest part of the road to the lamp post. Then, they start running in opposite directions: one dog runs 3 metres per second, and the other runs 2 metres per second. After one second of running, how fast is the angle made by the two leashes increasing?

A triangle has one side that is 1 cm long, and another side that is 2 cm , and the third side is formed by an elastic band that can shrink and stretch. The two fixed sides are rotated so that the angle they form, θ, grows by 1.5 radians each second. Find the rate of change of the area inside the triangle when $\theta=\pi / 4$.

A crow is one kilometre due east of the math building, heading east at 5 kph . An eagle is two kilometres due north of the math building, heading north at 7 kph . How fast is the distance between the two birds increasing at this instant?

Table of Contents

Radioactive Decay

The number of atoms in a sample that decay in a given time interval is proportional to the number of atoms in the sample.

Differential Equation

Let $Q=Q(t)$ be the amount of a radioactive substance at time t. Then for some positive constant k :

$$
\frac{d Q}{d t}=-k Q
$$

Solution - Theorem 3.3.2
Let $Q(t)=C e^{-k t}$, where k and C are constants. Then:

321/515 Equation 3.3.1

Seaborgium Decay

The amount of ${ }^{266} \mathrm{Sg}$ (Seaborgium-266) in a sample at time t (measured in seconds) is given by

$$
Q(t)=C e^{-k t}
$$

Let's approximate the half life of ${ }^{266} S g$ as 30 seconds. That is, every 30 seconds, the size of the sample halves.

What are C and k ?

Radioactive Decay

Quantity of a Radioactive Isotope

$$
Q(t)=C e^{-k t}
$$

$Q(t)$: quantity at time t

What is the sign of $Q(t)$?
A. positive or zero
B. negative or zero
C. could be either
D. I don't know

What is the sign of C ?
A. positive or zero
B. negative or zero
C. could be either
D. I don't know

A sample of radioactive matter is stored in a lab in 2000. In the year 2002, it is tested and found to contain 10 units of a particular radioactive isotope. In the year 2005, it is tested and found to contain only 2 units of that same isotope. How many units of the isotope were present in the year 2000?
$Q^{\prime}(t)=k Q(t)$
The number of atoms in a sample that decay in a given time interval is proportional to the number of atoms in the sample.

The rate of growth of a population in a given time interval is propotional to the number of individuals in the population, when the population has ample resources.

The amount of interest a bank account accrues in a given time interval is proportional to the balance in that bank account.

Exponential Growth - Theorem 3.3.2

Let $Q=Q(t)$ satisfy:

$$
\frac{d Q}{d t}=k Q
$$

for some constant k. Then for some constant $C=Q(0)$,

$$
Q(t)=C e^{k t}
$$

Suppose $y(t)$ is a function with the properties that

$$
\frac{d y}{d t}+3 y=0 \quad \text { and } \quad y(1)=2
$$

What is $y(t)$?

Flu Season

The CDC keeps records (link) on the number of flu cases in the US by week. At the start of the flu season, the 40th week of 2014, there are 100 cases of a particular strain. Five weeks later (at week 45), there are 506 cases. What do you think was the first week to have 5,000 cases? What about 10,000 cases?

Newton's Law of Cooling - Equation 3.3.7

The rate of change of temperature of an object is proportional to the difference in temperature between that object and its surroundings.

$$
\frac{d T}{d t}(t)=K[T(t)-A]
$$

where $T(t)$ is the temperature of the object at time t, A is the (constant) ambient temperature of the surroundings, and K is some constant depending on the object.

Newton's Law of Cooling - Equation 3.3.7

$$
\frac{d T}{d t}(t)=K[T(t)-A]
$$

$T(t)$ is the temperature of the object, A is the ambient temperature, and K is some constant.

$$
T(t)=[T(0)-A] e^{K t}+A
$$

is the only function satisfying Newton's Law of Cooling
If $T(10)<A$, then:
Evaluate $\lim _{t \rightarrow \infty} T(t)$.
A. $K>0$
A. A
B. $T(0)>0$
B. 0
C. $T(0)>A$
C. ∞
D. $T(0)<A$
D. $T(0)$

$$
\frac{d T}{d t}(t)=K[T(t)-A]
$$

$T(t)$ is the temperature of the object, A is the ambient temperature, K is some constant.

What is true of K ?
A. $K \geq 0$
B. $K \leq 0$
C. $K=0$
D. K could be positive, negative, or zero, depending on the object
E. I don't know

What assumptions are we making that might not square with the real world?

Newton's Law of Cooling - Equation 3.3.7

$$
\frac{d T}{d t}=K[T(t)-A]
$$

$T(t)$ is the temperature of the object, A is the ambient temperature, and K is some constant.

Temperature of a Cooling Body - Corollary 3.3.8

$$
T(t)=[T(0)-A] e^{K t}+A
$$

A farrier forms a horseshoe heated to $400^{\circ} \mathrm{C}$, then dunks it in a river at room-temperature $\left(25^{\circ} \mathrm{C}\right)$. The water boils for 30 seconds. The horseshoe is safe for the horse when it's $40^{\circ} \mathrm{C}$. When can the farrier put on the horseshoe?

$$
T(t)=[T(0)-A] e^{K t}+A
$$

333/515 Example 3.3.9

In 1963, the US Fish and Wildlife Service recorded a bald eagle population of 487 breeding pairs. In 1993, that number was 4015. How many breeding pairs would you expect there were in 2006 ? What about 2015?

A glass of just-boiled tea is put on a porch outside. After ten minutes, the tea is 40°, and after 20 minutes, the tea is 25°. What is the temperature outside?

334/515 Example 3.3.11
link: Wood Bison Restoration in Alaska, Alaska Department of Fish and Game

Excerpt:
Based on experience with reintroduced populations elsewhere, wood bison would be expected to increase at a rate of $15 \%-25 \%$ annually after becoming established.... With an average annual growth rate of 20%, an initial precalving population of 50 bison would increase to 500 in approximately 13 years.

Are they using our same model?

COMPOUND INTEREST

Suppose you invest \$10,000 in an account that accrues interest each month. After one month, your balance (with interest) is $\$ 10,100$. How much money will be in your account after a year?

Compound interest is calculated according to the formula $P e^{r t}$, where r is the interest rate and t is time.

CARRYING CAPACITY

For a population of size P with unrestricted access to resources, let β be the average number of offspring each breeding pair produces per generation, where a generation has length t_{g}. Then $b=\frac{\beta-2}{2 t_{g}}$ is the net birthrate (births minus deaths) per member per unit time. This yields $\frac{d P}{d t}(t)=b P(t)$, hence:

But as resources grow scarce, b might change.

Carrying Capacity

Then:

$$
\frac{d P}{d t}(t)=\underbrace{b_{0}\left(1-\frac{P(t)}{K}\right)}_{\text {per capita birthrate }} P(t)
$$

This is an example of a differential equation that we don't have the tools to solve. (If you take more calculus, though, you'll learn how!) It's also an example of a way you might tweak a model so its assumptions better fit what you observe.

Radiocarbon Dating

Researchers at Charlie Lake in BC have found evidence ${ }^{2}$ of habitation dating back to around 8500 BCE. For instance, a butchered bison bone was radiocarbon dated to about 10,500 years ago.

Suppose a comparable bone of a bison alive today contains $1 \mu \mathrm{~g}$ of ${ }^{14} \mathrm{C}$. If the half-life of ${ }^{14} \mathrm{C}$ is about 5730 years, roughly how much ${ }^{14} \mathrm{C}$ do you think the researchers found in the sample?
A. About $\frac{1}{10,500} \mu \mathrm{~g}$
D. About $1 \mu \mathrm{~g}$
B. About $\frac{1}{4} \mu \mathrm{~g}$
C. About $\frac{1}{2} \mu \mathrm{~g}$
E. I'm not sure how to estimate this

2http://pubs.aina.ucalgary.ca/arctic/Arctic49-3-265.pdf 341/515 Example 3.3.5

Table of CONTENTS

Suppose a body is discovered at $3: 45 \mathrm{pm}$, in a room held at 20°, and the body's temperature is 27°, not the normal 37°. At $5: 45 \mathrm{pm}$, the temperature of the body has dropped to 25.3°. When did the inhabitant of the body die?

Approximating a Function

Constant Approximation - Equation 3.4.1

We can approximate $f(x)$ near a point a by

$$
f(x) \approx f(a)
$$

Approximating a Function

Linear Approximation (Linearization) - Equation 3.4.3
We can approximate $f(x)$ near a point a by the tangent line to $f(x)$ at a, namely

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

To find a linear approximation of $f(x)$ at a particular point x, pick a point a near to x, such that $f(a)$ and $f^{\prime}(a)$ are easy to calculate.

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Let $f(x)=\sqrt{x}$. Approximate $f(8.9)$.

To find a linear approximation of $f(x)$ at a particular point x, pick a point a near to x, such that $f(a)$ and $f^{\prime}(a)$ are easy to calculate.

346/515 Example 3.4 .5

CAN WE COMPUTE?

Suppose we want to approximate the value of $\cos (1.5)$. Which of the following linear approximations could we calculate by hand? (You can leave things in terms of π.)
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=3 / 2$
C. both
D. neither

CAN WE COMPUTE?

Which of the following tangent lines is probably the most accurate in approximating $\cos (1.5)$?
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=\pi / 4$
C. constant approximation: $\cos 1.5 \approx \cos (\pi / 2)=0$
D. the linear approximations should be better than the constant approximation, but both linear approximations should have the same accuracy

Linear Approximation

Approximate $\sin (3)$ using a linear approximation. You may leave your answer in terms of π.

LINEAR ApproXimation

Approximate $e^{1 / 10}$ using a linear approximation.
If $f(x)=e^{x}$ and $a=0$:

Linear Approximation Wrap-Up

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?
What is $L^{\prime}(a)$?
What is $L^{\prime \prime}(a) ?$ (Recall $L^{\prime \prime}(x)$ is the derivative of $L^{\prime}(x)$.)

Linear Approximation Wrap-Up

Let $L(x)$ be a linear approximation of $f(x)$.

$f(a)$	$L(a)$	same
$f^{\prime}(a)$	$L^{\prime}(a)$	same
$f^{\prime \prime}(a)$	$L^{\prime \prime}(a)$	different 3

	Constant	Linear	Quadratic
Function value matches at $x=a$	\checkmark	\checkmark	\checkmark
First derivative matches at $x=a$	\times	\checkmark	\checkmark
Second derivative matches at $x=a$	\times	\times	\checkmark
$355 / 515$			

QUADRATIC Approximation

Imagine we approximate $f(x)$ at $x=a$ with a parabola, $P(x)$.

$$
\begin{array}{ll}
\text { Constant: } & f(x) \approx f(a) \\
\text { Linear: } & f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
\text { Quadratic: } & f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}
\end{array}
$$

QUADRATIC APPROXIMATION

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Approximate $\log (1.1)$ using a quadratic approximation.

Determine what $f(x)$ and a should be so that you can approximate the following using a quadratic approximation.
$\log (.9)$
$e^{-1 / 30}$
$\sqrt[5]{30}$
$(2.01)^{6}$

QUADRATIC Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Approximate $\sqrt[3]{28}$ using a quadratic approximation.
You may leave your answer unsimplified, as long as it is an expression you could figure out from integers using only plus, minus, times, and divide.

	Constant	Linear	Quadratic	degree n
match $f(a)$	\checkmark	\checkmark	\checkmark	\checkmark
match $f^{\prime}(a)$	\times	\checkmark	\checkmark	\checkmark
match $f^{\prime \prime}(a)$	\times	\times	\checkmark	\checkmark
\cdots				
$\begin{aligned} & \text { match } \\ & f^{(n)}(a) \end{aligned}$	\times	\times	\times	\checkmark
match $f^{(n+1)}(a)$	\times	\times	\times	\times

Write the following expressions in sigma notation:

1. $3+4+5+6+7$
2. $8+8+8+8+8$
3. $1+(-2)+4+(-8)+16$

Factorial - Definition 3.4.9

We read " n !" as " n factorial."
For a natural number $n, n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.
By convention, $0!=1$.
We write $f^{(n)}(x)$ to mean the $n^{\text {th }}$ derivative of $f(x)$. By convention, $f^{(0)}(x)=f(x)$.

Taylor Polynomial - Definition 3.4.11

Given a function $f(x)$ that is differentiable n times at a point a, the n-th degree Taylor polynomial for $f(x)$ about a is

$$
T_{n}(a)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

If $a=0$, we also call it a Maclaurin polynomial.

366/515

$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Find the 7th degree Maclaurin ${ }^{4}$ polynomial for e^{x}.
$T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}$
Find the 8th degree Maclaurin polynomial for $f(x)=\sin x$.

Notation 3.4.18

Let x, y be variables related such that $y=f(x)$. Then we denote a small change in the variable x by Δx (read as "delta x "). The corresponding small change in the variable y is denoted Δy (read as "delta y ").

$$
\Delta y=f(x+\Delta x)-f(x)
$$

Thinking about change in this way can lead to convenient approximations.

$T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}$

Now $8=0$
You
Find the 7th degree Taylor polynomial for $f(x)=\log x$, centered at $a=1$.

Let $y=f(x)$ be the amount of water needed to produce x apples in an orchard.
A farmer wants to know how a much water is needed to increase their crop yield. Δx is shorthand for some change in the number of apples, and Δy is shorthand for some change in the amount of water.

- Consider changing the number of apples grown from a to $a+\Delta x$
- Then the change in water requirements goes from $y=f(a)$ to $y=f(a+\Delta x)$

$$
\Delta y=f(a+\Delta x)-f(a)
$$

LINEAR APPROXIMATION OF Δy

- Using a linear approximation, setting $x=a+\Delta x$:

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a) & & \text { linear approximation } \\
f(a+\Delta x) & \approx f(a)+f^{\prime}(a)(\Delta x) & & \text { set } x=a+\Delta x \\
\Delta y=f(a+\Delta x)-f(a) & \approx f^{\prime}(a) \Delta x & & \text { subtract } f(a) \text { both sides }
\end{aligned}
$$

Quadratic Approximation of Δy

If we wanted a more accurate approximation, we can use other Taylor polynomials. For example, let's try the quadratic approximation.

Quadratic Approximation of Δy (Equation 3.4.21)

$$
\Delta y \approx f^{\prime}(a) \Delta x+\frac{1}{2} f^{\prime \prime}(a)(\Delta x)^{2}
$$

Linear Approximation of Δy (Equation 3.4.20)

$$
\Delta y \approx f^{\prime}(a) \Delta x
$$

If we set $\Delta x=1$, then $\Delta y \approx f^{\prime}(a)$. So, if we want to produce $a+1$ apples instead of a apples, the extra water needed for that one extra apple is about $f^{\prime}(a)$. We call this the marginal water cost of the apple.

373/515 Example 3.4.19

Approximate $\tan \left(65^{\circ}\right)$ three ways: using constant, linear, and quadratic approximation.
Your answer may consist of the sum, difference, product, and quotient of integers, roots of integers, and π.

You measure an angle $x \approx \frac{\pi}{2}$, and use it to calculate $y=\sin x \approx 1$. However, you suspect the angle was not exactly equal to $\frac{\pi}{2}$, which means the actual value y is slightly less than 1 . In order for your value of y to have an error of no more than $\frac{1}{200}$, how accurate does your measurement of θ have to be?

Definition 3.4.25

Let Q_{0} be the exact value of a quantity and let $Q_{0}+\Delta Q$ be the measured value. We call

$$
|\Delta Q|
$$

the absolute error of the measurement, and

$$
100 \frac{|\Delta Q|}{Q_{0}}
$$

the percentage error of the measurement.

Suppose a bottle of water is labelled as having 500 mL of water, but in fact contains 502.

ERROR: WHAT "CAUSES" ERROR IN AN ESTIMATION?

Constant approximation: We assume the function doesn't change, but in fact the function does change (its derivative is not always zero).

Once again, you find yourself in the position of measuring an angle x, which you use to compute $y=\sin x$. Let's say both x and y are positive. If your percentage error in measuring x is at most 1%, what is the corresponding maximum percentage error in y ?
Use a linear approximation.

378/515 Example 3.4.26
CONTROLLING THE "CAUSE" OF THE ERROR

Constant approximation: We assume the function doesn't change, but in fact the function does change (its derivative is not always zero). BUT: suppose we know the max and min values of the function's slope.

Error

The error in an estimation $f(x) \approx T_{n}(x)$ is $f(x)-T_{n}(x)$. We often use $\left|f(x)-T_{n}(x)\right|$ if we don't care whether the approximation is too big or too little, but only that it is not too egregious.

Taylor's Theorem - Equation 3.4.33

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

The trick is bounding $f^{(n+1)}(c)$. It's usually OK to be sloppy here! Also, usually what we care about is the magnitude of the error: $\left|f(x)-T_{n}(x)\right|$.

Taylor's Theorem - Equation 3.4.33

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

Bound the error associated with using $T_{3}(x)$ to approximate $e^{1 / 10}$.

Third degree Maclaurin polynomial for $f(x)=e^{x}$:

$$
\begin{aligned}
T_{3}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(0)(x-0)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0)(x-0)^{3} \\
& =e^{0}+e^{0} x+\frac{1}{2!} e^{0} x^{2}+\frac{1}{3!} e^{0} x^{3} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

Bound the error associated with using $T_{3}(x)$ to approximate $e^{1 / 10}$.

Taylor's Theorem - Equation 3.4.33

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

Suppose we use the 5th degree Taylor polynomial centered at $a=\pi / 2$ to approximate $f(x)=\cos x$. What could the magnitude of the error be if we approximate $\cos (2)$?

Taylor's Theorem - Equation 3.4.33

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

Suppose we use a third degree Taylor polynomial centred at 4 to approximate $f(x)=\sqrt{x}$. If we use this Taylor polynomial to approximate $\sqrt{4.1}$, give a bound for our error.

Taylor's Theorem - Equation 3.4.33

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

Suppose you want to approximate the value of e, knowing only that it is somewhere between 2 and 3. You use a 4th degree Maclaurin polynomial for $f(x)=e^{x}$ to approximate $f(1)=e^{1}=e$. Bound your error.

Computing approximations uses resources. We might want to use as few resources as possible while ensuring sufficient accuracy.

A reasonable question to ask is: which approximation will be good enough to keep our error within some fixed error tolerance?

Which Degree?

Suppose you want to approximate $\sin 3$ using a Taylor polynomial of $f(x)=\sin x$ centered at $a=\pi$. If the magnitude of your error must be less than 0.001, what degree Taylor polynomial should you use?

Which Degree?

Suppose you want to approximate e^{5} using a Maclaurin polynomial of $f(x)=e^{x}$. If the magnitude of your error must be less than 0.001 , what degree Maclaurin polynomial should you use?

Which Degree?

Suppose you want to approximate $\log \frac{4}{3}$ using a Taylor polynomial of $f(x)=\log x$ centred at $a=1$. If the magnitude of your error must be less than 0.001, what degree Taylor polynomial should you use?

Which Degree?

Let $f(x)=\sqrt[4]{x}$. Suppose you use a second-degree Taylor polynomial of $f(x)$ centered at $a=81$ to approximate $\sqrt[4]{81.2}$. Bound your error, and tell whether $T_{2}(10)$ is an overestimate or underestimate.

Table of Contents

Engineering Design Example

A lever of density $3 \mathrm{lbs} / \mathrm{ft}$ is being used to lift a 500-pound weight, attached one foot from the fixed point.

For an L-foot-long lever, the force P required to lift the system satisfies

$$
500(1)+3 L\left(\frac{L}{2}\right)-P L=0
$$

What length of lever will require the least amount of force to lift?

Source: Drexel (2006)

394/515

Circuit Example

When a critically damped RLC circuit is connected to a voltage source, the current I in the circuit varies with time according to the equation

$$
I(t)=\left(\frac{V}{L}\right) t e^{-\frac{R t}{2 L}}
$$

where V is the applied voltage, L is the inductance, and R is the resistance (all of which are constant).

We need to choose wires that will be able to safely carry the current at all times.

[^3]
LEAST SQUARES EXAMPLE

You have a lot of data that more-or-less resembles a line. Which line does it most resemble?

Extrema - Definition 3.5.3

Let I be an interval, and let the function $f(x)$ be defined for all $x \in I$. Now let $c \in I$.

- We say that $f(x)$ has a global (or absolute) minimum on the interval I at the point $x=c$ if $f(x) \geq f(c)$ for all $x \in I$.
- We say that $f(x)$ has a global (or absolute) maximum on I at $x=c$ if $f(x) \leq f(c)$ for all $x \in I$.
- We say that $f(x)$ has a local minimum at $x=c$ if $f(x) \geq f(c)$ for all $x \in I$ that are near c.
- We say that $f(x)$ has a local maximum at $x=c$ if $f(x) \leq f(c)$ for all $x \in I$ that are near c.
The maxima and minima of a function are called the extrema of that function.

Anatomy of a Function

[^4]
Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If $f^{\prime}(5)=0$, then:
A. $f^{\prime}(5) \mathrm{DNE}$
B. f has a local maximum at 5
C. f has a local minimum at 5
D. f has a local extremum (maximum or minimum) at 5
E. f may or may not have a local extremum (max or min) at 5

Theorem 3.5.4
If a function $f(x)$ has a local maximum or local minimum at $x=c$ and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

401/515

SKETCH

Draw a continuous function $f(x)$ with a local maximum at $x=3$ and a local minimum at $x=-1$.

Draw a continuous function $f(x)$ with a local maximum at $x=3$ and a local minimum at $x=-1$, but $f(3)<f(-1)$.

Draw a function $f(x)$ with a singular point at $x=2$ that is NOT a local maximum, or a local minimum.

Second Derivatives

- Is slope increasing, decreasing, or constant?
- Is second derivative positive, negative, or zero?
- Is critical point a local max, local min, or neither?

- Is slope increasing, decreasing, or constant?
- Is second derivative positive, negative, or zero?
- Is critical point a local max, local min, or neither?

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:
Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$.
Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local
Then $x=a$ is a local

ENDPOINTS

global minima; not at critical points

Theorems 3.5.11 and 3.5.12

A function that is continuous on the interval $[a, b]$ (where a and b are real numbers-not infinite) has a global max and min, and they occur at endpoints, critical points, or singular points.

Determining Extrema

To find local extrema:

- Could be at
- Could be at
- Could be at
- At these points, check whether there is some interval around x where $f(x)$ is no larger than the other numbers, or no smaller. (A sketch helps. The signs of the derivatives on either side of x are also a clue.)
To find global extrema:
- Could be at
- Could be at
- Could be at
- Check the value of the function at all of these, and compare.

Find All Extrema ${ }^{4}$:

$$
f(x)=x^{3}-3 x
$$

Find All Extrema

$$
f(x)=\sqrt[3]{x^{2}-64}, \quad x \text { in }[-1,10]
$$

Find the largest and smallest values of $f(x)=\sin ^{2} x-\cos x$.

Find the largest and smallest value of $f(x)=x^{4}-18 x^{2}$.

MAX/MIN WORD PROBLEMS

A rancher wants to build a rectangular pen, using an existing wall for one side of the pen, and using 100 m of fencing for the other three sides. What are the dimensions of the pen built this way that has the largest area?

General Idea

We know how to find the global extrema of a function over an interval.

Problems often involve multiple variables, but we can only deal with functions of one variable.

Find all the variables in terms of ONE variable, so we can find extrema.

413/515

Suppose you want to make a rectangle with perimeter 400. What dimensions give you the maximum area?

You want to build a pen, as shown below, in the shape of a rectangle with two interior divisions. If you have 1000 m of fencing, what is the greatest area you can enclose?

You are standing on the bank of a river that is 1 km wide, and you want to reach the opposite side, two km down the river. You can paddle 3 kilometres per hour, and walk 6 kph while carrying your boat. What route takes you to your desired destination in the least amount of time?

You are standing on the bank of a river that is 1 km wide, and you want to reach the opposite side, two km down the river. You can paddle 6 kilometres per hour, and walk 3 kph while carrying your boat. What route takes you to your desired destination in the least amount of time?

[^5]Suppose you want to manufacture a closed cylindrical can on the cheap. If the can should have a volume of one litre $\left(1000 \mathrm{~cm}^{3}\right)$, what is the smallest surface area it can have?

Let C be the circle given by $x^{2}+y^{2}=1$. What is the closest point on C to the point $(-2,1)$?

A cylindrical can is to hold 20π cubic metres. The material for the top and bottom costs $\$ 10$ per square metre, and material for the side costs $\$ 8$ per square metre. Find the radius r and height h of the most economical can.

Suppose a 2-metre high fence stands 1 metre away from a high wall. What is the shortest ladder that will reach over the fence to the wall?

Suppose a file folder is 12 inches long and 9 inches wide. You want to make a box by opening the folder and capping the ends. What angle should you open the folder to, to make the box with the greatest volume?

422/515 Example 3.5.20
Suppose we take a right triangle, with height h and base b. We inscribe a rectangle in it that shares a right angle, as shown below. What are the dimensions of the rectangle with the biggest area?

ACTIVITY

By cutting out squares from the corners, turn a piece of paper into an open-topped box that holds a lot of beans.

425/515 Example 3.5.16

Curve Sketching

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\log (x+1)}
$$

Where might you expect $f(x)$ to have a vertical asymptote? What does the function look like nearby?
(Recall: a vertical asymptote occurs at $x=a$ if the function has an infinite discontinuity at a. That is, $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$.)

Where is $f(x)=0$?

What happens to $f(x)$ near its other endpoint, $x=-1$?

Table of Contents

Curve Sketching

Good things to check:

- Domain
- Vertical asymptotes: $\lim _{x \rightarrow a} f(x)= \pm \infty$
- Intercepts: $x=0, f(x)=0$
- Horizontal asymptotes and end behavior: $\lim _{x \rightarrow \pm \infty} f(x)$

Curve Sketching

Identify: domain, vertical asymptotes, intercepts, and horizontal asymptotes

$$
f(x)=\frac{x-2}{(x+3)^{2}}
$$

429/515 Example 3.6. 1

Curve Sketching

Identify: domain, vertical asymptotes, intercepts, and horizontal asymptotes

$$
f(x)=\frac{(x+2)(x-3)^{2}}{x(x-5)}
$$

First Derivative

Add complexity: Increasing/decreasing, critical and singular points.

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

What does the graph of the following function look like?

$$
f(x)=\frac{1}{3} x^{3}+2 x^{2}+4 x+24
$$

MNEMONIC

+ $+\quad+\quad-$

Sketch graphs with the following properties, or explain that none exist.

Concavity

438/515 Definition 3.6.3

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Is it possible to be concave up and decreasing?
A. Yes
B. No
C. I'm not sure

Suppose a function $f(x)$ is defined for all real numbers, and is concave up on the interval $[0,1]$. Which of the following must be true?
A. $f^{\prime}(0)<f^{\prime}(1)$
B. $f^{\prime}(0)>f^{\prime}(1)$
C. $f^{\prime}(0)$ is positive
D. $f^{\prime}(0)$ is negative
E. I'm not sure

Even Function - Definition 3.6.6
A function $f(x)$ is even if, for all x in its domain,
$f(-x)=f(x)$

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=$
Suppose $f(3)=-2$. Then $f(-3)=$

Odd Function - Definition 3.6.7

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

EVEN FUNCTIONS

Even Function - Definition 3.6.6

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

Examples:
$f(x)=x^{2}$
$f(x)=x^{4}$
$f(x)=\cos (x)$
$f(x)=\frac{x^{4}+\cos (x)}{x^{16}+7}$

Odd Functions

Odd Function - Definition 3.6.7

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Examples:
$f(x)=x$
$f(x)=x^{3}$
$f(x)=\sin (x)$
$f(x)=\frac{x\left(1+x^{2}\right)}{x^{2}+5}$

Poll Tiiime

Pick out the odd function.
A:

B:

D:

Poll Tiimme

Pick out the even function.

B:

D:

Even more and more Poll tiiliime

Suppose $f(x)$ is an even function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)$
B. $f(0)=-f(0)$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

OK OK... LAST ONE
Suppose $f(x)$ is an even function, differentiable for all real numbers.
What can we say about $f^{\prime}(x)$?
A. $f^{\prime}(x)$ is also even
B. $f^{\prime}(x)$ is odd
C. $f^{\prime}(x)$ is constant
D. all of the above are true
E. none of the above are necessarily true
$53 / 515$

Ignoring concavity, sketch $f(x)=\sin (\sin x)$.

Challenge: ignoring exact locations of extrema, sketch $g(x)=\sin (2 \pi \sin x)$.

PERIODICITY

Periodic - Definition 3.6.10

A function is periodic with period $P>0$ if

$$
f(x)=f(x+P)
$$

whenever x and $x+P$ are in the domain of f, and P is the smallest such (positive) number

Examples: $\sin (x), \cos (x)$ both have period $2 \pi ; \tan (x)$ has period π.

Let's Graph

$$
f(x)=\left(x^{2}-64\right)^{1 / 3}
$$

$f^{\prime}(x)=\frac{2 x}{3\left(x^{2}-64\right)^{2 / 3}} ;$
$f^{\prime \prime}(x)=\frac{-2\left(\frac{1}{3} x^{2}+64\right)}{3\left(x^{2}-64\right)^{5 / 3}}$

LET'S GRAPH

$$
f(x)=\frac{x^{2}+x}{(x+1)\left(x^{2}+1\right)^{2}}
$$

Note: for $x \neq-1, f(x)=\frac{x(x+1)}{(x+1)\left(x^{2}+1\right)^{2}}=\frac{x}{\left(x^{2}+1\right)^{2}}$

$$
g(x):=\frac{x}{\left(x^{2}+1\right)^{2}}
$$

$$
g^{\prime}(x)=\frac{1-3 x^{2}}{\left(x^{2}+1\right)^{3}}
$$

$$
g^{\prime \prime}(x)=\frac{12 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{4}}
$$

Ch 3.6 Review: matching

LET'S GRAPH

$$
f(x)=x(x-1)^{2 / 3}
$$

- $f^{\prime}(x)=\frac{5 x-3}{3 \sqrt[3]{x-1}}$
- $f^{\prime \prime}(x)=\frac{2(5 x-6)}{9(\sqrt[3]{x-1})^{4}}$
- $f(3 / 5) \approx 0.3$
- $f(6 / 5) \approx 0.4$

Match the Function to its Graph

A. $f(x)=x^{3}(x+2)(x-2)=x^{5}-4 x^{3}$
B. $f(x)=x(x+2)^{3}(x-2)=x^{5}+4 x^{4}-16 x^{2}-16 x$
C. $f(x)=x(x+2)(x-2)^{3}=x^{5}-4 x^{4}+16 x^{2}-16 x$

III

II

Match the Function to its Graph

A. $f(x)=\frac{x-1}{(x+1)(x+2)}$
B. $f(x)=\frac{(x-1)^{2}}{(x+1)(x+2)}$
C. $f(x)=\frac{x-1}{(x+1)^{2}(x+2)}$
D. $f(x)=\frac{(x-1)^{2}}{(x+1)^{2}(x+2)}$

$$
\begin{gathered}
\text { A. } f(x)=x^{5}+15 x^{3} \\
\begin{array}{ll}
\text { D. } f(x)=x^{3}-15 x & \text { B. } f(x)=x^{5}-15 x^{3}
\end{array} \quad \text { C. } f(x)=x^{5}-15 x^{2} \\
\text { E. } f(x)=x^{7}-15 x^{4}
\end{gathered}
$$

A. $f(x)=|x|^{e}$
B. $f(x)=e^{|x|}$
C. $f(x)=e^{x^{2}}$
D. $f(x)=e^{x^{4}-x}$

II
III

[^6]
Table of Contents

BACK TO Limits!
$\lim _{x \rightarrow \infty} \frac{x^{2}}{5} \quad \lim _{x \rightarrow \infty} \frac{5}{x^{2}} \quad \lim _{x \rightarrow 0} \frac{x^{2}}{5} \quad \lim _{x \rightarrow 0} \frac{5}{x^{2}}$

Indeterminate Forms - Definition 3.7.1

Suppose $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$. Then the limit

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

is an indeterminate form of the type ${ }_{0}^{0}$.
Suppose $\lim _{x \rightarrow a} F(x)=\lim _{x \rightarrow a} G(x)=\infty($ or $-\infty)$. Then the limit

$$
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}
$$

is an indeterminate form of the type $\frac{\infty}{\infty}$.
When you see an indeterminate form, you need to do more work.

465/515
Indeterminate Forms and the Derivative
$\lim _{x \rightarrow 0} \frac{3 \sin x-x^{4}}{x^{2}+\cos x-e^{x}}$
indeterminate form of the type $\frac{0}{0}$

Indeterminate Forms

$\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5} \quad$ indeterminate form of the type $\frac{0}{0}$
$\lim _{x \rightarrow \infty} \frac{3 x^{2}-4 x+2}{8 x^{2}-5} \quad$ indeterminate form of the type $\frac{\infty}{\infty}$

L'Hôpital's Rule: First Part - Theorem 3.7.2

Let f and g be functions such that $\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)$.
If $f^{\prime}(a)$ and $g^{\prime}(a)$ exist and $g^{\prime}(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$.

If f and g are differentiable on an open interval containing a, and if
$\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
This works even for $a= \pm \infty$.

Extremely Important Note:
L'Hôpital's Rule only works on indeterminate forms.

L'Hôpital's Rule: Second Part - Theorem 3.7.2

Let f and g be functions such that $\lim _{x \rightarrow a} f(x)=\infty=\lim _{x \rightarrow a} g(x)$.
If $f^{\prime}(a)$ and $g^{\prime}(a)$ exist and $g^{\prime}(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$.

If f and g are differentiable on an open interval containing a, and if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

This works even for $a= \pm \infty$.

Extremely Important Note:
L'Hôpital's Rule only works on indeterminate forms.

469/515

Little Harder

$\lim _{x \rightarrow 0} \frac{x^{4}}{e^{x}-\cos x-x}$
indeterminate form of the type $\frac{0}{0}$

Evaluate:

$$
\lim _{x \rightarrow 2} \frac{3 x \tan (x-2)}{x-2}
$$

Evaluate:

$$
\lim _{x \rightarrow \infty} \frac{\log x}{\sqrt{x}}
$$

Other Indeterminate Forms

$\lim _{x \rightarrow \infty} e^{-x} \log x$
form $0 \cdot \infty$

Vote Vote Vote

Which of the following can you immediately apply L'Hôpital's rule to?
A. $\frac{e^{x}}{2 e^{x}+1}$
B. $\lim _{x \rightarrow 0} \frac{e^{x}}{2 e^{x}+1}$
C. $\lim _{x \rightarrow \infty} \frac{e^{x}}{2 e^{x}+1}$
D. $\lim _{x \rightarrow \infty} e^{-x}\left(2 e^{x}+1\right)$
E. $\lim _{x \rightarrow 0} \frac{e^{x}}{x^{2}}$

Votey McVoteface

Suppose you want to use L'Hôpital's rule to evaluate $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$, which has the form $\frac{0}{0}$. How does the quotient rule fit into this problem?
A. You should use the quotient rule because the function you are differentiating is a quotient.
B. You will not use the quotient rule because you differentiate the numerator and the denominator separately
C. You may use the quotient rule because perhaps $f(x)$ or $g(x)$ is itself in the form of a quotient
D. You will not use L'Hôpital's rule because $\frac{0}{0}$ is not an appropriate indeterminate form
E. You will not use L'Hôpital's rule because, since the top has limit zero, the whole function has limit 0

474/515

More Questions

Which of the following is NOT an indeterminate form?
A. $\frac{\infty}{\infty}$
for example, $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$
B. $\frac{0}{0}$
for example, $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
C. $\frac{0}{\infty}$
for example, $\lim _{x \rightarrow 0^{+}} \frac{x}{\log x}$
D. $0 \cdot \infty$
for example, $\lim _{x \rightarrow \infty} x(\arctan (x)-\pi / 2)$
E. all of the above are indeterminate forms

I HAVE SO MANY QUESTIONS
 Which of the following is NOT an indeterminate form?
 A. 1^{∞}
 for example, $\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}$
 B. 0^{∞}
 for example, $\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)^{x}$
 C. ∞^{0}
 for example, $\lim _{x \rightarrow \infty} x$
 D. 0^{0}
 for example, $\lim _{x \rightarrow 0^{+}} x^{x}$
 E. all of the above are indeterminate forms
 F. none of the above are indeterminate forms

EXPONENTIAL INDETERMINATE FORMS

$$
\lim _{x \rightarrow \infty} x^{1 / x}
$$

478/515
Exponential Indeterminate Forms

$$
\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{3 x}
$$

Evaluate:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\log x}{\log \sqrt{x}} \\
& \lim _{x \rightarrow \infty}(\log x)^{\sqrt{x}} \\
& \lim _{x \rightarrow 0} \frac{\arcsin x}{x}
\end{aligned}
$$

More Examples

$\lim _{x \rightarrow \infty} \sqrt{2 x^{2}+1}-\sqrt{x^{2}+x}$	
	$\lim _{x \rightarrow 0} \sqrt[x^{2}]{\sin ^{2} x}$
	$\lim _{x \rightarrow 0} \sqrt[2]{\cos x}$
481/515 Problem Bookscetion 377 Questios 14, 9, 20,	

Sketch the graph of $f(x)=x \log x$.
Note: when you want to know $\lim _{x \rightarrow 0} f(x)$, you'll need to use L'Hôpital.

Evaluate $\lim _{x \rightarrow 0^{+}}(\csc x)^{x}$

482/515

```
Basic Question
What function has derivative f(x)}\mathrm{ ?
If }\mp@subsup{F}{}{\prime}(x)=f(x)\mathrm{ , we call }F(x)\mathrm{ an antiderivative of }f(x)
```


Examples

```
\(\frac{d}{d x}\left[x^{2}\right]=2 x\), so \(x^{2}\) is an antiderivative of \(2 x\).
\(\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}+5\right]=2 x\), so \(x^{2}+5\) is (also) an antiderivative of \(2 x\).
```

What is the most general antiderivative of $2 x$?

ANTIDERIVATIVES

Find the most general antiderivative for the following equations.

$$
f(x)=17
$$

$$
f(x)=m
$$

where m is a constant.

differentiation fact		antidifferentiation fact
$\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{2}\right]=2 x$	\Longrightarrow	antideriv of $2 x:$
$\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{3}\right]=3 x^{2}$	\Longrightarrow	
$\frac{\mathrm{~d}}{\mathrm{~d} x}\left[x^{4}\right]=4 x^{3}$	\Longrightarrow	

antideriv of x^{n} :

Power Rule for Antidifferentiation

The most general antiderivative of x^{n} is $\frac{1}{n+1} x^{n+1}+c$ if $n \neq-1$

Power Rule for Antidifferentiation

The most general antiderivative of x^{n} is $\frac{1}{n+1} x^{n+1}+c$ if $n \neq-1$

- $\frac{\mathrm{d}}{\mathrm{d} x}[$
$]=5 x^{2}-15 x+3$
- $\frac{\mathrm{d}}{\mathrm{d} x}[$
$]=13\left(5 x^{14}-3 x^{3 / 7}+52 e^{x}\right)$

Find the most general antiderivatives.

$$
\begin{gathered}
f(x)=\cos x \\
f(x)=\sin x \\
f(x)=\sec ^{2} x \\
f(x)=\frac{1}{1+x^{2}} \\
f(x)=\frac{1}{1+x^{2}+2 x}
\end{gathered}
$$

Find the most general antiderivatives.

$$
\begin{gathered}
f(x)=\frac{1}{x}, x>0 \\
f(x)=5 x^{2}-32 x^{5}-17 \\
f(x)=\csc x \cot x \\
f(x)=\frac{5}{\sqrt{1-x^{2}}}+17
\end{gathered}
$$

Find the most general antiderivatives.

$$
\begin{gathered}
f(x)=17 \cos x+x^{5} \\
f(x)=\frac{23}{5+5 x^{2}} \\
f(x)=\frac{23}{5+125 x^{2}}
\end{gathered}
$$

490/515

Chose Your Own Adventure

Antiderivative of $\sin x \cos x$:
A. $\cos x \sin x+c$
B. $-\cos x \sin x+c$
C. $\sin ^{2} x+c$
D. $\frac{1}{2} \sin ^{2} x+c$
E. $\frac{1}{2} \cos ^{2} x \sin ^{2} x+c$

In general, antiderivatives of x^{n} have the form $\frac{1}{n+1} x^{n+1}$. What is the single exception?
A. $n=-1$
B. $n=0$
C. $n=1$
D. $n=e$
E. $n=1 / 2$

All the Adventures are Calculus, Though

Find all functions $f(x)$ with $f(1)=5$ and $f^{\prime}(x)=e^{3 x+5}$.
Suppose the velocity of a particle at time t is given by $v(t)=t^{2}+\cos t+3$. What function gives its position?
A. $s(t)=2 t-\sin t$
B. $s(t)=2 t-\sin t+c$
C. $s(t)=t^{3}+\sin t+3 t+c$
D. $s(t)=\frac{1}{3} t^{3}+\sin t+3 t+c$
E. $s(t)=\frac{1}{3} t^{2}-\sin t+3 t+c$

Suppose the velocity of a particle at time t is given by
$v(t)=t^{2}+\cos t+3$, and its position at time 0 is given by $s(0)=5$.
What function gives its position?
A. $s(t)=\frac{1}{3} t^{3}+\sin t+3 t$
B. $s(t)=\frac{1}{3} t^{3}+\sin t+3 t+5$
C. $s(t)=\frac{1}{3} t^{3}+\sin t+3 t+c$
D. $s(t)=5 t+c$
E. $s(t)=5 t+5$

493/515

Let $Q(t)$ be the amount of a radioactive isotope in a sample. Suppose the sample is losing $50 e^{-5 t} \mathrm{mg}$ per second to decay. If $Q(1)=10 e^{-5} \mathrm{mg}$, find the equation for the amount of the isotope at time t.

Suppose $f^{\prime}(t)=2 t+7$. What is $f(10)-f(3)$?

This file contains questions spanning CLP-1. It should not be taken as a complete review of the course, but rather as a jumping-off point. If you struggle with one question, go back to review its entire section. Sections are noted at the bottom of each page

S1
Find all solutions to $x^{3}-3 x^{2}-x+3=0$
\qquad

498/515 Factoring functions is a high-school review topic. It comes in especially handy in Section 3.6, Sketching Graphs

S3
Find all values of c such that the following function is continuous:

$$
f(x)=\left\{\begin{array}{ccc}
8-c x & \text { if } & x \leq c \\
x^{2} & \text { if } & x>c
\end{array}\right.
$$

Use the definition of continuity to justify your answer.

S4 Compute $\lim _{x \rightarrow-\infty} \frac{3 x+5}{\sqrt{x^{2}+5}-x}$	S5 Find the equation of the tangent line to the graph of $y=\cos (x)$ at $x=\frac{\pi}{4}$.
S6 For what values of x does the derivative of $\frac{\sin (x)}{x^{2}+6 x+5}$ exist?	S7 Find $f^{\prime}(x)$ if $f(x)=\left(x^{2}+1\right)^{\sin (x)}$.
503/515 Section 26: Using the Arithmetic of Derivatives	504/515 Section 210: The Natural Logarithm

S8	
Consider a function of the form $f(x)=A e^{k x}$ where A and k are	
constants. If $f(0)=3$ and $f(2)=5$, find the constants A and k.	

.

S10
Estimate $\sqrt{35}$ using a linear approximation

S9
Consider a function $f(x)$ which has $f^{\prime \prime \prime}(x)=\frac{x^{3}}{10-x^{2}}$. Show that when we approximate $f(1)$ using its second Maclaurin polynomial, the absolute error is less than $\frac{1}{50}=0.02$.

506/515 Subection 3.4.8: The Error in the Taylor Polynomial Approximations

S11

Let $f(x)=x^{2}-2 \pi x-\sin (x)$. Show that there exists a real number c such that $f^{\prime}(c)=0$.

S12 Find the intervals where $f(x)=\frac{\sqrt{x}}{x+6}$ is increasing.	L1 Compute the limit $\lim _{x \rightarrow 1} \frac{\sqrt{x+2}-\sqrt{4-x}}{x-1}$.
L2 Show that there exists at least one real number c such that $2 \tan (c)=c+1$.	L3 Determine whether the derivative of following function exists at $x=0$ $f(x)= \begin{cases}2 x^{3}-x^{2} & \text { if } x \leq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x>0\end{cases}$ You must justify your answer using the definition of a derivative.

L4
If $x^{2} \cos (y)+2 x e^{y}=8$, then find y^{\prime} at the points where $y=0$.
You must justify your answer.

513/515 Section 2.11: Implicit Differentiation

L6

Find the global maximum and the global minimum for $f(x)=x^{3}-6 x^{2}+2$ on the interval $[3,5]$.

L5

Two particles move in the cartesian plane. Particle A travels on the x-axis starting at $(10,0)$ and moving towards the origin with a speed of 2 units per second. Particle B travels on the y-axis starting at $(0,12)$ and moving towards the origin with a speed of 3 units per second. What is the rate of change of the distance between the two particles when particle A reaches the point $(4,0)$?

514/515 Section 3.2: Related Rates

Included Work

Belk, J. (13 April 2014). Bad Optimization Problems. I thought that Jack M made an interesting comment about this question. [Comment on the online forum post Optimization problems that today's students might actually encounter?]. Stackexchange
https://matheducators.stackexchange.com/questions/1550/
optimization-problems-that-todays-students-might-actually-encounter (accessed October 2019 or earlier), 397
'Water Drop' by hunotika is licensed under CC BY 3.0 (accessed 21 July 2021), 373

'Brain' by Eucalyp is licensed under CC BY 3.0 (accessed 8 June 2021), 57, 65, 69, 85, 89, 117, 137, 145, 149, 153, 209, 249, 253, 337, 341, 373

Gears' by Dan Hetteix is licensed under CC BY 3.0 (accessed 7 July 2021), 313
: \ddagger : 'Speedometer' by Serhii Smirnov is licensed under CC BY 3.0 (accessed 6 July 2021), 285
) 'Switch' by K Staelin is in the public domain (accessed 7 July 2021), 317
4
(old tree' by FayraLovers is licensed under CC BY 3.0 (accessed 21 July 2021), 373
$\stackrel{\square}{\square}$
screenshots of graphs generated using Desmos Graphing Calculator https://www.desmos.com/calculator (accessed 13 November 2015), 461
using Desmos Graphing Calculator , screenshots of graphs generated (accessed 13 November 2015), 465
screenshot of graph using Desmos Graphing Calculator,
https://www. desmos.com/calculator (accessed 19 October 2017), 249
screenshot of graph using Desmos Graphing Calculator,
https://www. desmos.com/calculator (accessed 19 October 2017), 249 , Ul screenshots from graphs generated using Desmos Graphing Calculator https: / /www. desmos.com/calculator (accessed 16 July 2021), 465 φ
screenshot of graph using Desmos Graphing Calculator, https://www. desmos. com/calculator (accessed 7 July 2021), 317
frreenshot from graphs generated using Desmos Graphing Calculator https://www.desmos.com/calculator, with text added (accessed 13 November 2015), 465

Author unknown. Optimization Problems. (2006). Drexel University Department of Mathematics, Calculus I Home Page Spring 2006, Calc 1 Spring lecture 6. https: / /www .

math.drexel.edu/\%7Ejwd25/CALC1 SPRING 06/lectures/lecture9.html

 (accessed October 2019 or earlier), 397Vectornaut. (10 May 2015). When someone swallows a dose of a drug, it doesn't go into their bloodstream all at once. [Comment on the online forum post Optimization problems that today's students might actually encounter?]. Stackexchange.
https://matheducators.stackexchange.com/questions/1550/ optimization-problems-that-todays-students-might-actually-encounter (accessed October 2019 or earlier), 397
豦
'Dog' by Vladimir Belochkin is licensed under CC BY 3.0 (accessed 17 June 2021), 25
'Goose' by Mary B is licensed under CC BY 3.0 (accessed 6 July 2021), 289
I U.S. WHO/NREVSS Collaborating Laboratories and ILNet. 'Stacked Column Chart WHO / /NREVSS' Centers for Disease Control and Prevention. No longer available from
http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html (accessed 20 October 2015), 329

Alaska Department of Fish and Game, Division of Wildlife Conservation. (April 2007). Wood Bison Restoration in Alaska: A Review of Environmental and Regulatory Issues and Proposed Decisions for Project Implementation, p. 11.
http://www.adfg.alaska.gov/static/species/speciesinfo/woodbison/ pdfs/er_no_appendices.pdf (accessed 2015 or 2016), 337

Driver et.al. Stratigraphy, Radiocarbon Dating, and Culture History of Charlie Lake Cave, British Columbia. ARCTICVOL. 49, no. 3 (September 1996) pp. 265-277. http://pubs.aina.ucalgary.ca/arctic/Arctic49-3-265.pdf (accessed 2015 or 2016), 345

Natasha Deshpande, Anoosha Kumar, Rohini Ramaswami. (2014). The Effect of National Healthcare Expenditure on Life Expectancy, page 12. College of Liberal Arts Ivan Allen College (IAC), School of Economics: Econometric Analysis Undergraduate Research Papers. https://smartech.gatech.edu/handle/1853/51648 (accessed July 2021), 133

Public Domain by Man vyi via https://commons.wikimedia.org/wiki/File: West_Show_Jersey_2010_farrier_f.jpg, accessed October 2015, 337

[^0]: ${ }^{1}$ Natasha Deshpande, Anoosha Kumar, Rohini Ramaswami, The Effect of National Healthcare Expenditure on Life Expectancy, page 12.
 Remark: physician density is measured as number of doctors per 1000 members of the population.

[^1]: 258/515 Definition 2.12.3

[^2]: ${ }^{2}$ (at time of writing) George Poteet,
 https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
 ${ }^{3}$ https://en.wikipedia.org/wiki/Land_speed_record

[^3]: Source: Belk (2014)

[^4]: c is a critical point if $f^{\prime}(c)=0$
 c is a singular point if $f^{\prime}(c)$ does not exist.

[^5]: 417/515

[^6]: 462/515

