Primitive and doubly primitive divisors in dynamical sequences by Khoa D. Nguyen (UBC and PIMS)

Let K be a number field or a function field of characteristic 0, let $\varphi(z) \in K(z)$ having degree at least 2 and let $\alpha \in K$ such that the orbit $\{\varphi^n(\alpha)\}_{n \geq 0}$ is infinite. Consider the question: (A) except trivial counter-examples, is it true that for all sufficiently large n, the element $\varphi^n(\alpha)$ has a prime divisor p that is not a divisor of $\varphi^k(\alpha)$ for every $k < n$. Ingram and Silverman are the first to consider this question in such generality. They even go further and ask: (B) except trivial counter-examples, is it true that for all $m \geq 0$ and $n > 0$ such that $m + n$ is sufficiently large, the element $\varphi^{m+n}(\alpha) - \varphi^m(\alpha)$ has a prime divisor p that is not a divisor of any $\varphi^{M+N}(\alpha) - \varphi^M(\alpha)$ for $M < n$ or $N < n$. Later on, Faber and Granville modify question (B) somewhat and provide certain evidence towards it.

In this talk, we explain how the ABC Conjecture implies that both questions have an affirmative answer. In the function field case our result is unconditional; when using a deep result of Yamanoi (previously conjectured by Vojta), we can show that p appears with multiplicity 1. This is joint work with Chad Gratton and Tom Tucker for Question (A), and with Dragos Ghioca and Tom Tucker for Question (B).