UBC Mathematics 402(201)

MWF 11:00-11:50, room MATH 204 http://www.math.ubc.ca/~loew/m402/

Overview: This course deals with the theory of minimization problems in which the choice variable is a function of one real variable. The classical theory as developed from Bernoulli through Euler to the present will be developed with careful attention to both theoretical precision and practical consequences. **Readings:** Lecture notes will appear regularly on the course web page, /www.math.ubc.ca/~loew/m402/. **Prerequisite:** C+ or better in either Math 320 or Math 301, or consent of the instructor.

Grading: 50% for the term (weekly homework, one test), 50% for the final exam.

CLASS TEST DATE: WEDNESDAY 25 FEBRUARY 2015.

Outline:

- I. The basic problem
 - A. Formulation of the problem; examples.
 - B. Descent directions and abstract necessary conditions.
 - C. The Euler-Lagrange Equation.
 - D. Regularity of extremals.
 - E. Invariance of extremals.
 - F. Strong local minima and the Weierstrass condition.
- II. Modifications of the basic problem.
 - A. Free endpoint problems.
 - B. Problems with several dependent variables.
 - C. Problems with several independent variables (sketch).
 - D. Isoperimetric problems.
 - E. The Weierstrass and Legendre conditions.
- III. Convexity.
 - A. Convex functions in finite-dimensional optimization.
 - B. Convex Lagrangians and sufficiency.
- IV. Second-order necessary conditions.
 - A. The accessory problem.
 - B. The Legendre condition.
 - C. The Jacobi condition.
 - D. Envelopes of extremals.
- V. Sufficient conditions.
 - A. Locally convex problems.
 - B. Equivalent problems.
 - C. The classical necessary conditions are almost sufficient.
 - D. Fields of extremals.
 - E. Existence and regularity theory.
- VI. Dynamic Programming.
 - A. Verification Functions.
 - B. The Principle of Optimality.
 - C. The Value Function.
 - D. The Hamilton-Jacobi Equation.
- VII. Classical Mechanics.
 - A. Hamilton's principle of least action.
 - B. Canonical transformations (optional).
 - C. Hamilton-Jacobi theory.

Topics V to VII may be truncated if time runs out. Student requests for other related topics are welcome.

Last update: 05 Jan 2015 (Mon), 13:53:57.

(Click a graphic to recheck.)