UBC Math 316: Elementary Differential Equations II May-August 2014

This page provides official background information for two courses running in parallel:

- UBC Math 257 Partial Differential Equations, and
- UBC Math 316 Elementary Differential Equations II.

Daily readings, homework, and updates, are on the courses' <u>Unified Home Page</u>.

Instructor

Dr. Philip D. Loewen

Office Emoil	Mathematics Building, room 207
Email	loew@math.ubc.ca (try this first)
Office phone	604-822-3082 (urgent cases only, please)
URI	http://www.math.ubc.ca/~loew/
Office Hours	Drop-in hours are shown below. Meetings outside these hours can also be arranged, but please reserve a time by email beforehand. Unexpected visitors often cannot be accommodated. <i>If you expect to need more than 15</i> <i>minutes, please make an appointment.</i>

May-June 2014^{*}

Mon	Tue	Wed	Thu	Fri
14:00-16:00	16:00-16:30	[none]	16:00-16:30	14:00-16:00

^{*} I will be unavailable on some days. Please check "Daily Specials" below before trekking to MATH 207.

Daily Specials NONE: This week looks normal so far.

Topic Outline

Topic	Hrs	Description
Review of Series	5	 Convergence concepts Geometric series and the ratio test Error control and Shanks Transformation Power series Analytic functions, radius of convergence
Linear Ordinary Differential Equations	9	 Power Series Solutions near an ordinary point General Solutions Initial-Value Problems Non-homogeneous problems Homogeneous ODE's with Constant Coefficients Non-Homogeneous ODE with Constant Coefficients ODE's of Euler type Change of independent variable Singular points: regular vs irregular Series solutions near a regular singular point (Frobenius method)
Linear Operators and Eigenvalue Problems	6	 The matrix case Operators and eigenvalues in function space Sample eigenvalue problems

		 Orthogonality and eigenfunction series
Eigenfunction-series	6	• Separation of variables: eigenvalue problems, formal
solutions for		series
Boundary-Value		 The Big Four standard eigenvalue problems
Problems		 Propagating coefficients
		Initialization
		 Special modes; superposition
		Nonhomogeneous PDE
		Nonhomogeneous BC
More General	5	Eigenvalue Problems
Eigenfunction Series		 Orthogonality and Eigenfunction Series
		• Sturm-Liouville Theory
		Full Fourier Series
Heat Equation in Depth	3	 Derivation; BC's and their meanings
		 Transient versus long-run behaviour
		 Splitting methods for nonhomogeneous boundary
		conditions
Laplace's Equation in	4	 Derivation and Interpretation
Depth		 Superposition and splitting
		 Neumann problems and consistency conditions
		 Physical solutions are bounded functions
		• Problems in polar coordinates (Euler equations reappear)
Wave Equation in Depth	4	 Derivation; BC's and their meanings
		 Travelling wave solutions
		D'Alambert's solution
		 Signal speed; reflections
		 Forcing and resonance
Numerical Methods	2	• Finite Differences
		 Spreadsheet Implementations
Total Hours on Outline	44	* *
	_	

Course Details

Required Text:

• William F. Trench, *Elementary Differential Equations with Boundary Value Problems*, 2013. Book 9 in the collection *Books and Monographs* available free online at <u>http://digitalcommons.trinity.edu/mono/9</u>.

Recommended Reading: Watch the main <u>course page</u> for writeups customized for this term's experience. In addition, consult the following:

- W. E. Boyce and R. C. DiPrima, *Elementary Differential Equations and Boundary Value Problems*, any edition since about #5. New York: John Wiley & Sons, 1997.
- Froese, Richard G., <u>Partial Differential Equations</u>. UBC M257/316 Lecture notes free on the Web.
- Peirce, Anthony, <u>UBC M257/316 course page for Sep-Dec 2013.</u> Look especially at the section headed "Lecture Notes".

Other Nice Books:

- Churchill, R. V., and J. W. Brown, *Fourier Series and Boundary Value Problems*. New York: McGraw-Hill, 1993.
- Troutman, John L., *Boundary Value Problems of Applied Mathematics*. Boston: PWS Publishing Company, 1994.
- Main, Iain G., *Vibrations and Waves in Physics*, third edition. Cambridge University Press, 1993.

Important Dates:

- Tuesday 13 May: Class starts, 14:00 in room LSK 200.
- Thursday 19 June: Midterm test in class. 90 minutes.
- Friday 20 June Wednesday 2 July: no classes.
- Thursday 3 July: Classes resume after mid-session break.
- Thursday 7 August: Last class of the term.

- Tuesday 12 August Saturday 16 August: Official exam period.
- **Evaluation:**
 - Daily Participation (bring your iClicker to class), 0-2%.
 - Weekly Homework (Due every Tuesday), 10%.
 - 19 June 2014 (Thursday), Midterm Exam, 38-40%, in class.
 - 12-16 August 2014, Final Exam, 50%, scheduled by UBC Enrolment Services.

Policies:

- Students may use **no resources except for writing equipment** on midterm and final examinations. This means **no formula sheet** and **no calculator.** Seriously.
- The final course grade is influenced only by what knowledge of the subject students demonstrate in the activities described above.
- There is no supplemental examination in this course.
- Missing a midterm normally results in a mark of 0. Exceptions may be granted in two cases: prior consent of the instructor or a medical emergency. In the latter case, the instructor must be notified within 48 hours of the missed test, and presented with a doctor's note immediately upon the student's return to UBC.

Course Web Page (daily details appear here): <u>http://www.math.ubc.ca/~loew/m316/</u>

Last update: 12 May 2014 (Mon), 12:00:10. W3C HTML W3C css (Click a graphic to recheck.)