Course Outline for Mathematics 406 (3 credits) Term 1, Sept.-Dec., 2018

Variational and Approximate Methods in Applied Mathematics

Prerequisites:	One of MATH 307, CPSC 302 and either MATH 400 or 80% in M256, M257, or M316	
Credit:	3 Credits. Math M406 is credit excluded with M401 and M405.	
Instructor:	Anthony Peirce, Office: Mathematics Building 108	
Home Page:	http://www.math.ubc.ca/~peirce	
Office Hours:	Monday: 10-11 am, Wed: 3-3:55 pm, Fri: 10-11 am	
Assessment: The final grades will be based on homework (45%) (including MATLAB		
projects), an in-class midterm exam (15%) and a final exam (40%).		
Assignments are to be submitted in hard-copy from at the designated class – no late assignments can be accepted. There will be no make-up midterms.		

Test Date: Wednesday November 14th.

Topics	Lectures
Introduction to numerical methods: Interpolation and Integration	
Variational and Green's function methods for ordinary differential	12
equations including an introduction to finite element methods	
Initial value problems for ordinary differential equations: explicit and	
implicit one step methods, multi-step methods, convergence	
Green's functions for elliptic equations: finite difference, finite element and	
boundary element formulations for Laplace's equation	
Evolution equations: parabolic and hyperbolic equations, the method of	5
lines, Lax's Convergence theory, von Neumann Stability analysis.	
Test	
Total	

<u>Useful Texts:</u>

- 1. Burden and Faires, Numerical Analysis, 9 th Edition, Brooks Cole; 9 Ed (2010).
- 2. Zauderer, Partial Differential Equations of Applied Math., Wiley-Interscience, 3 Ed. (2006).
- 3. Stakgold and Holst, Green's functions and Boundary value problems, Wiley, 3 Ed. (2011).
- 4. Crouch, S.L. and Starfield, A.M., Boundary Element Methods in Solid Mechanics, George Allen and Unwin, London, 1983.
- 5. Courant and Hilbert: Methods of Math. Physics Vol. 1 & 2.
- 6. Hildebrand, Methods of Applied Mathematics, Dover Books on Math., 1992.