Course Outline for Mathematics 257/316 (3 credits) Term 1, SeptDec., 2018			
Partial Differential Equations			

Partial Differential Equations			
Prerequisites:	One of Math 215, 255, 265.		
Credit:	3 Credits. Credit only given for one of Math 256, 257, 316.		
Instructor:	Anthony Peirce, Office: Mathematics Building 108		
Home Page:	http://www.math.ubc.ca/~peirce_		
Office Hours:	Monday: 10-11 am, Wed: 3-3:55 pm, Fri: 10-11 am.		
Assessment:	The final grades will be based on homework (10%) (includi	ng	
	EXCEL/MATLAB projects), two in class midterm exams (4)		
	and one final exam (50%). Assignments are to be submitt		
	hard-copy from at the designated class – no late assignment	ents	
	can be accepted. There will be no make-up midterms. A		
	student must get at least 35% on the final exam to pass t	his	
	course.		
<u>Test Dates:</u>	Wednesday, October 17 th , Wednesday, November 14 th .		
<u>Text:</u>	Elementary Differential Equations and Boundary Value Pro	blems	
(recommended	(10 ^m Ed), W.E. Boyce & R.C. DiPrima (John Wiley & Sons) 2012	
but not required)			
Other References:	1.Applied Partial Differential Equations with Fourier Series and I	Boundary	
	Value Problems (4 nd Ed), R. Haberman, (Pearson), 2004.		
	3. <u>http://www.math.ubc.ca/~rfroese/notes/Lecs316.pdf</u> , Richard Froes	e, Partial	
Topics:	Differential Equations, UBC M257/316 lecture notes free on the web. Approx	v Timo	
1. Review of techni		1 hr	
	of variable coefficient ODEs (Chapter 5)	1 111	
a. Series soli	utions at ordinary points (5 1-5 3)	3 hrs	
	utions at ordinary points (5.1-5.3) ngular points (5.4-5.7, 5.8 briefly)	3 hrs 4 hrs	
b. Regular si	ngular points (5.4-5.7, 5.8 briefly)	3 hrs 4 hrs	
b. Regular si3. Introduction to I	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10)	4 hrs	
b. Regular si3. Introduction to DThe heat equation (10)	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10)).5), the wave equation (10.7), Laplace's equation (10.8)		
 b. Regular si 3. Introduction to I The heat equation (10) 4. Introduction to I 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets	4 hrs 2 hrs 3 hrs	
 b. Regular si 3. Introduction to I The heat equation (10 4. Introduction to I a. First and si 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10)).5), the wave equation (10.7), Laplace's equation (10.8)	4 hrs 2 hrs 3 hrs	
 b. Regular si 3. Introduction to B The heat equation (10) 4. Introduction to B a. First and S b. Explicit fi 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er	4 hrs 2 hrs 3 hrs	
 b. Regular si 3. Introduction to 1 The heat equation (10 4. Introduction to 1 a. First and s b. Explicit fi 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation	4 hrs 2 hrs 3 hrs	
 b. Regular si 3. Introduction to I The heat equation (10 4. Introduction to I a. First and si b. Explicit fi c. Explicit fi 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) ().5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions	4 hrs 2 hrs 3 hrs rors	
 b. Regular si 3. Introduction to I The heat equation (10) 4. Introduction to I a. First and si b. Explicit fi c. Explicit fi d. Finite diffi 5. Fourier Series and si 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) D.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation Perence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10)	4 hrs 2 hrs 3 hrs rors	
 b. Regular si 3. Introduction to I The heat equation (10) 4. Introduction to I a. First and si b. Explicit fi c. Explicit fi d. Finite diffi 5. Fourier Series and a. The heat explanation 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation erence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6)	4 hrs 2 hrs 3 hrs rors ods 9 hrs	
 b. Regular si 3. Introduction to I The heat equation (10) 4. Introduction to I a. First and si b. Explicit fi c. Explicit fi d. Finite diffi 5. Fourier Series and a. The heat explicit fi b. The wave 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation Second approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6) equation (10.7)	4 hrs 2 hrs 3 hrs rors ods 9 hrs 3 hrs	
 b. Regular si 3. Introduction to 1 The heat equation (10 4. Introduction to 1 a. First and s b. Explicit fi c. Explicit fi d. Finite diff 5. Fourier Series and a. The heat education b. The wave c. Laplace's 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) D.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation Perence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6) equation (10.7) equation (10.8)	4 hrs 2 hrs 3 hrs rors ods 9 hrs	
 b. Regular si 3. Introduction to I The heat equation (10 4. Introduction to I a. First and s b. Explicit fi c. Explicit fi d. Finite diff 5. Fourier Series and a. The heat c b. The wave c. Laplace's 6. Boundary Value 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation erence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6) equation (10.7) equation (10.8) Problems and Sturm-Liouville Theory (Chapter 11)	4 hrs 2 hrs 3 hrs rors ods 9 hrs 3 hrs 5 hrs	
 b. Regular si 3. Introduction to I The heat equation (10) 4. Introduction to I a. First and a b. Explicit fi d. Explicit fi d. Finite diff 5. Fourier Series an a. The heat e b. The wave c. Laplace's 6. Boundary Value a. Eigenfund 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation erence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6) equation (10.7) equation (10.8) Problems and Sturm-Liouville Theory (Chapter 11) etions and eigenvalues (11.1)	4 hrs 2 hrs 3 hrs rors ods 9 hrs 3 hrs 5 hrs 1 hr	
 b. Regular si 3. Introduction to I The heat equation (10 4. Introduction to I a. First and s b. Explicit fi c. Explicit fi d. Finite diff 5. Fourier Series and a. The heat ed b. The wave c. Laplace's 6. Boundary Value a. Eigenfund b. Sturm-Lice 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation Prence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6) equation (10.7) equation (10.8) Problems and Sturm-Liouville Theory (Chapter 11) tions and eigenvalues (11.1) buville boundary value problems (11.2)	4 hrs 2 hrs 3 hrs rors ods 9 hrs 3 hrs 5 hrs 1 hr 1 hr	
 b. Regular si 3. Introduction to I The heat equation (10 4. Introduction to I a. First and s b. Explicit fi c. Explicit fi d. Finite diff 5. Fourier Series and a. The heat ed b. The wave c. Laplace's 6. Boundary Value a. Eigenfund b. Sturm-Lice 	ngular points (5.4-5.7, 5.8 briefly) Partial differential equations (Chapter 10) 0.5), the wave equation (10.7), Laplace's equation (10.8) numerical methods for PDEs using spread sheets second derivative approximations using finite differences - er nite difference schemes for the heat equation Stability and derivative boundary conditions nite difference schemes for the wave equation erence approximation of Laplace's Equation – iterative meth nd Separation of Variables (Chapter 10) equation and Fourier Series (10.1-10.6) equation (10.7) equation (10.8) Problems and Sturm-Liouville Theory (Chapter 11) etions and eigenvalues (11.1)	4 hrs 2 hrs 3 hrs rors ods 9 hrs 3 hrs 5 hrs 1 hr	

Tests <u>2 hrs</u> 36 hrs

Math 257-316 PDE Formula sheet - final exam

Trigonometric and Hyperbolic Function identities

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$	$\sin^2 t + \cos^2 t = 1$
$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \beta \sin \alpha.$	$\sin^2 t = \frac{1}{2} \left(1 - \cos(2t) \right)$
$\sinh(\alpha \pm \beta) = \sinh\alpha \cosh\beta \pm \sinh\beta \cosh\alpha$	$\cosh^2 \bar{t} - \sinh^2 t = 1$
$\cosh(\alpha \pm \beta) = \cosh \alpha \cosh \beta \pm \sinh \beta \sinh \alpha.$	$\sinh^2 t = \frac{1}{2} \left(\cosh(2t) - 1 \right)$

Basic linear ODE's with real coefficients

	constant coefficients	Euler eq
ODE	ay'' + by' + cy = 0	$ax^2y'' + bxy' + cy = 0$
indicial eq.	$ar^2 + br + c = 0$	ar(r-1) + br + c = 0
$r_1 \neq r_2$ real	$y = Ae^{r_1x} + Be^{r_2x}$	$y = Ax^{r_1} + Bx^{r_2}$
$r_1 = r_2 = r$	$y = Ae^{rx} + Bxe^{rx}$	$y = Ax^r + Bx^r \ln x $
$r = \lambda \pm i\mu$	$e^{\lambda x}[A\cos(\mu x) + B\sin(\mu x)]$	$x^{\lambda}[A\cos(\mu \ln x) + B\sin(\mu \ln x)]$

Series solutions for y'' + p(x)y' + q(x)y = 0 (*) around $x = x_0$.

Ordinary point x_0 : Two linearly independent solutions of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Regular singular point x_0 : Rearrange (\star) as: $(x - x_0)^2 y'' + [(x - x_0)p(x)](x - x_0)y' + [(x - x_0)^2q(x)]y = 0$ If $r_1 > r_2$ are roots of the indicial equation: r(r-1) + br + c = 0 where $b = \lim_{x \to x_0} (x - x_0)p(x)$ and $c = \lim_{x \to x_0} (x - x_0)^2q(x)$ then a solution of (\star) is

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}$$
 where $a_0 = 1$

The second linerly independent solution y_2 is of the form: Case 1: If $r_1 - r_2$ is neither 0 nor a positive integer:

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$$
 where $b_0 = 1$.

Case 2: If $r_1 - r_2 = 0$:

$$y_2(x) = y_1(x)\ln(x-x_0) + \sum_{n=1}^{\infty} b_n(x-x_0)^{n+r_2}$$
 for some $b_1, b_{2...}$

Case 3: If $r_1 - r_2$ is a positive integer:

$$y_2(x) = ay_1(x)\ln(x-x_0) + \sum_{n=0}^{\infty} b_n(x-x_0)^{n+r_2}$$
 where $b_0 = 1$.

Fourier, sine and cosine series

Let f(x) be defined in [-L, L] then its Fourier series Ff(x) is a 2*L*-periodic function on **R**: $Ff(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}) \right\}$ where $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$

Theorem (Pointwise convergence) If f(x) and f'(x) are piecewise continuous, then Ff(x) converges for every x to $\frac{1}{2}[f(x-)+f(x+)]$. **Parseval's indentity**

$$\frac{1}{L} \int_{-L}^{L} |f(x)|^2 dx = \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} \left(|a_n|^2 + |b_n|^2 \right) dx$$

For f(x) defined in [0, L], its cosine and sine series are

$$Cf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L}), \quad a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{n\pi x}{L}) \, dx,$$
$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{L}), \quad b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) \, dx.$$

D'Alembert's solution to the wave equation

PDE: $u_{tt} = c^2 u_{xx}, -\infty < x < \infty, t > 0$ **IC**: $u(x,0) = f(x), u_t(x,0) = g(x)$. **SOLUTION**: $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$

Sturm-Liouville Eigenvalue Problems

ODE: $[p(x)y']' - q(x)y + \lambda r(x)y = 0, \quad a < x < b.$ **BC:** $\alpha_1 y(a) + \alpha_2 y'(a) = 0, \quad \beta_1 y(b) + \beta_2 y'(b) = 0.$ **Hypothesis:** p, p', q, r continuous on [a, b]. p(x) > 0 and r(x) > 0 for $x \in [a, b]$. $\alpha_1^2 + \alpha_2^2 > 0.$ $\beta_1^2 + \beta_2^2 > 0.$ **Properties** (1) The differential operator Ly = [p(x)y']' - q(x)y is symmetric

in the sense that (f, Lg) = (Lf, g) for all f, g satisfying the BC, where $(f, g) = \int_a^b f(x)g(x) dx$. (2) All eigenvalues are real and can be ordered as $\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$ with $\lambda_n \to \infty$ as $n \to \infty$, and each eigenvalue admits a unique (up to a scalar factor) eigenfunction ϕ_n .

(3) **Orthogonality**: $(\phi_m, r\phi_n) = \int_a^b \phi_m(x)\phi_n(x)r(x) dx = 0$ if $\lambda_m \neq \lambda_n$. (4) **Expansion**: If $f(x) : [a, b] \to \mathbf{R}$ is square integrable, then

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x), \ a < x < b \ , \ c_n = \frac{\int_a^b f(x)\phi_n(x)r(x) \, dx}{\int_a^b \phi_n^2(x)r(x) \, dx}, \ n = 1, 2, \dots$$