SYLLABUS FOR 603D: HOMOTOPY THEORY, CALSSIFYING SPACES AND GROUP COHOMOLOGY

1. CONTACT INFORMATION

The instructor for this course is me, Ben Williams. I may be reached at tbjw@math.ubc.ca.

The course website is http://www.math.ubc.ca/~tbjw/ClassifyingSpaces/index.html. What appears in this document is much the same as what appears on the website, and the website is more up-to-date. Please consult the website in case of any changes.

2. References

There is no single textbook for this class. Various references will be provided for selected topics over the course of the term.

3. Description

This is a topics course in the homotopy theory of classifying spaces of groups, and related aspects of homotopy theory. We have three principal aims: first, to explain how (algebraic) group cohomology for discrete groups can be viewed a special case of a homotopy-theoretic study of classifying spaces; second, to give an introduction to the theory of G bundles and characteristic classes; and third, to establish computational tools which are more generally applicable.

A first course in algebraic topology (such as Math 527) will be assumed, as will familiarity with undergraduate algebra.

4. Homework & Grades

A number of homework exercises will be handed out over the course of the term. These will form the basis of the final grade for anyone registered in this course.

5. OUTLINE

Here follows an overambitious list of topics.

- (1) Locally trivial fibrations
- (2) Classifying spaces and universal bundles
- (3) Fibrations
- (4) Spectral sequences
 - Constructions
 - The Serre (Leray–Serre) spectral sequence

- The Eilenberg–Moore spectral sequence
- The Fibre-to-base Eilenberg–Moore spectral sequence
- (5) Characteristic classes
- (6) Sheaf cohomology
- (7) Cohomology operations
- (8) The extra-special 2-groups [time permitting]
- (9) Vector fields on spheres [time permitting]