MATH104: Differential Calculus

 with applications to commerce and social sciences| Instructor: | Ida Karimfazli |
| :--- | :--- |
| e-mail: | idak@math.ubc.ca |
| TA: | Matthew Yeung |
| e-mail: | matthew.yeung@alumni.ubc.ca |
| Lectures: | Mon. 1-2pm, Tues. Wed. \& Thurs. 1-3pm in LSK 200 |
| Office hours: Mon 2-2:30pm, Tues. \& Wed. 3-3:30pm in LSK 200
 TA office hours: To be announced | |
| Course website: | https://blogs.ubc.ca/idak/math104-921/ |
| Textbook: | Calculus: Early Transcendentals with student solutions manual, Vol 1.
 4th custom edition for UBC, by Briggs, Cochran and Gillett |

Course description:

Exponential and trigonometric functions, limits, continuity, derivatives and rates of change, maxima and minima, graphing functions, optimization, Taylor polynomilas.

Academic misconduct:

UBC takes cheating incidents very seriously. After due investigation, students found guilty of cheating on tests and examinations are usually given a final grade of 0 in the course, along with other penalties such as suspension or cancellation of a scholarships. Please refer to the Academic Calendar for more information:
http://www.calendar.ubc.ca/vancouver/?tree= $=3,54,111,959$
Grade breakdown: WebWork: 10\%, due Sun. 10pm every week,
Quizzes: $\quad 40 \%$, every Mon.
Final: $\quad 50 \%$, cumulative (covers the entire semester).

Tentative course schedule:

Week	Date	Topic	Sections
1	$5 / 9$ to 12	Review: Exponential functions, Logarithms and inverse functions, A standard business problem, Introduction to limits	$1.3,2.1,2.3$ and notes
2	$5 / 16$ to 19	Continuous functions, Intermediate value the- orem, Average and instantaneous rates of change, the derivative, Derivative of trig func- tions, Rules of differentiation, Higher order derivatives	$2.3,2.6,3.1$, 3.4
3	$5 / 23$ to 26	Marginal cost, Velocity, Acceleration, Chain rule, Implicit differentiation, Derivatives of Logarithms and exponentials, Inverse trig functions	$3.5,3.7,3.3,3.10$
4	$5 / 30$ to $6 / 2$	Elasticity of demand, Exponential growth, Compund interest, Related rates, Minima and maxima	$3.9,3.11,4.1$ and notes
5	$6 / 6$ to $6 / 9$	Information in the first and second derivatives, Curve sketching and asymptotes, Optimiza- tion problems	$4.2,4.3,2.4$, $2.5,4.4$
6	$06 / 13$ to 16	Optimization problems, Linear approxima- tion, Taylor polynomials	9.1

