## MATH 559: Complex Fluids

Course Material and Topics: This course will give students an overview of Non-Newtonian Fluid Dynamics, and discuss two approaches to building constitutive models for complex fluids: continuum modeling and kinetic-microstructural modeling. In addition, it will provide an introduction to multiphase complex fluids and to numerical models and algorithms for computing complex fluid flows.

Topics to be covered:
I. Introduction

- Background and motivation
- Review of required mathematics
II. Continuum theories
- Oldroyd's theory for viscoelastic fluids
- Ericksen-Leslie theory for liquid crystals
- Viscoplastic theories
III. Kinetic-microstructural theories
- Dumbbell theory for polymer solutions
- Doi-Edwards theory for entangled systems
- Doi theory for liquid crystalline materials
IV. Heterogeneous/multiphase systems
- Suspension theories (Einstein, Taylor, Batchelor, etc.)
- Kinetic theory for emulsions and drop dynamics
- Energetic formalism for interfacial dynamics
- Numerical methods for moving boundary problems
- Applications in physical and biological systems

Prerequisites: Undergraduate-level course on Partial Differential Equations (MATH 257 or MATH 400), and graduate-level course on Fluid Mechanics (one of MATH 519, CHBE 557, MECH 502).

Evaluation: The instructional format for the course will consist of lectures of 3 hours per week. The final grade is computed as such: $50 \%$ from cumulative marks of 5 biweekly homework assignments, and $50 \%$ on a final presentation based on a cluster of research papers. Typically there is no final exam.

## Possible references:

- R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford (1999).
- R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vols. 1 \& 2, Wiley and Sons (1987).
- P. G. deGennes and J. Prost, The Physics of Liquid Crystals, Clarendon (1993).
- D. Barthes-Biesel, Microhydrodynamics and Compex Fluids, Taylor \& Francis (2012).
- M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford (1988).

