Math 342, Fall Term 2011
Final Exam

December 9th, 2011

Student number:

LAST name:

First name:

Signature:

Instructions

• Do not turn this page over. You will have 150 minutes for the exam.
• You may not use books, notes or electronic devices of any kind.
• Solutions should be written clearly, in complete English sentences, showing all your work.
• If you are using a result from the textbook, the lectures or the problem sets, state it properly.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>/10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>/25</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>/10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>/15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>/15</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>/10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>/100</td>
</tr>
</tbody>
</table>

1
1 (15 points)

a. Define “a is invertible in the commutative ring R” and exhibit a unit in $\mathbb{Z}/30\mathbb{Z}$. (10 points)

b. Use Euclid’s algorithm to calculate $\gcd(120, 14)$. (5 points)
2 (10 points)

In this problem we consider the map \(f: \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z} \) given by

\[
 f([n]_{30}) = [n + 2]_5.
\]

a. Assume that \([n]_{30} = [m]_{30}\). Show that \([n + 2]_5 = [m + 2]_5\). (5 points)

b. Is \(f \) a group homomorphism (for the addition operation)? Why or why not? (5 points)
3 A Linear Code (25 points)

In this problem we work over the field with 7 elements, denoted \mathbb{F}_7 or $\mathbb{Z}/7\mathbb{Z}$.

Let $H \in M_{3 \times 7}(\mathbb{F}_7)$ be the following matrix:

$$H = \begin{pmatrix}
1 & 1 & 0 & 1 & -1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & -1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & -1
\end{pmatrix}$$

and let $C_H = \{ \mathbf{v} \in \mathbb{F}_7^7 \mid H\mathbf{v} = 0 \}$.

a. Show that C_H is a subspace of \mathbb{F}_7^7. (5 points)

b. Show that C_H has weight 3. (7 points)
c. Let \(\mathbf{v}' \in \mathbb{F}_7^7 \). Show that \(\{ \mathbf{x} \in \mathbb{F}_7^7 \mid H\mathbf{x} = H\mathbf{v}' \} \) is the coset \(C_H + \mathbf{v}' \). (5 points)

e. For \(\mathbf{v}' = (1, 2, 3, 6, 0, 1, 2) \mod 7 \) evaluate \(H\mathbf{v}' \) and find the coset leader of the coset from part c. (5 points)
f. Find the $v \in C_H$ which is closest in Hamming distance to the v' given in part e.; justify your answer. (3 points)
4 Reed-Solomon Codes (10 points)

Let $C_{RS} \subseteq \mathbb{F}_7^7$ be the Reed-Solomon code obtained by evaluating polynomials of degree at most 3 at all 7 points of \mathbb{F}_7. Find the weight of C_{RS}. How does this code compare with C_H?
5 Polynomials (15 points)

a. Calculate $\gcd(x^3 + x + [1]_3, x^2 + [2]_3)$ in the ring of polynomials over $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$. (5 points)

b. Show that there are no $f, g \in \mathbb{F}_3[x]$ so that $\left(\frac{f}{g}\right)^2 = x^2 + [2]_3$. (10 points)
6 RSA (15 points)

Bob advertises a public RSA key with modulus $m = 33$ and encoding exponent $e = 7$. You will play the role of Eve, the eavesdropper.

a. Find the order $\varphi(m)$ of the group $(\mathbb{Z}/m\mathbb{Z})^\times$ (4 pts).

b. Find the decoding exponent d (4 pts).

c. Decode the messages $[2]_{33}$, $[7]_{33}$ sent by Alice (7 pts).
7 Order of elements (10 points)

Let \((G, e, \cdot)\) be a group, and let \(g \in G\).

a. Show that \(\{n \in \mathbb{Z} \mid g^n = e\}\) is an ideal of \(\mathbb{Z}\). (3 points)

b. Assume that \(g^{37} = e\) but \(g \neq e\). Show that \(g^n = e\) if and only if \(37|n\). (2 points)
c. Let $m \geq 1$ and let $a, b \in (\mathbb{Z}/m\mathbb{Z})^\times$ have orders r, s respectively. Let t be the order of ab. Show: (5 points)

$$\frac{rs}{(r,s)^2} \mid t \quad \text{and} \quad t \nmid \frac{rs}{(r,s)}.$$