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Student Number

Special Instructions:
1. No books, notes, or calculators are allowed. A MATLAB/Octave formula sheet is provided on the last page. 2. Read the
questions carefully and make sure you provide all the information that is asked for in the question. 3. Show all your work.
Answers without any explanation or without the correct accompanying work could recieve no credit, even if they are correct.
4. Answer the question in the space provided. Continue on the back of the page if necessary.

Rules governing examinations
• Each examination candidate must be prepared to produce, upon the request
of the invigilator or examiner, his or her UBCcard for identification.

• Candidates are not permitted to ask questions of the examiners or invigilators,
except in cases of supposed errors or ambiguities in examination questions,
illegible or missing material, or the like.

• No candidate shall be permitted to enter the examination room after the
expiration of one-half hour from the scheduled starting time, or to leave during
the first half hour of the examination. Should the examination run forty-five
(45) minutes or less, no candidate shall be permitted to enter the examination
room once the examination has begun.

• Candidates must conduct themselves honestly and in accordance with es-
tablished rules for a given examination, which will be articulated by the ex-
aminer or invigilator prior to the examination commencing. Should dishonest
behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or
forgetfulness shall not be received.

• Candidates suspected of any of the following, or any other similar prac-
tices, may be immediately dismissed from the examination by the exam-
iner/invigilator, and may be subject to disciplinary action:

(a) speaking or communicating with other candidates, unless otherwise au-
thorized;

(b) purposely exposing written papers to the view of other candidates or
imaging devices;

(c) purposely viewing the written papers of other candidates;
(d) using or having visible at the place of writing any books, papers or other

memory aid devices other than those authorized by the examiner(s); and,
(e) using or operating electronic devices including but not limited to tele-

phones, calculators, computers, or similar devices other than those authorized
by the examiner(s)–(electronic devices other than those authorized by the ex-
aminer(s) must be completely powered down if present at the place of writing).

• Candidates must not destroy or damage any examination material, must hand
in all examination papers, and must not take any examination material from
the examination room without permission of the examiner or invigilator.

• Notwithstanding the above, for any mode of examination that does not fall
into the traditional, paper-based method, examination candidates shall adhere
to any special rules for conduct as established and articulated by the examiner.

• Candidates must follow any additional examination rules or directions com-
municated by the examiner(s) or invigilator(s).
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[12] 1.

(a) [3 pts] Write down the definition of the matrix norm ‖A‖ of a matrix A.

Solution:

‖A‖ = max
x6=0

‖Ax‖
‖x‖

(b) [3 pts] Write down the definition of the condition number cond(A) of a matrix A. Why is this a useful concept?

Solution: The definition is cond(A) = ‖A‖‖A−1‖. The condition number bounds the relative error in the solution
xof the system Ax = b in terms of the relative error in b. More precisely, if Ax = b and Ax + ∆x = b + ∆b then
‖∆x‖/‖x‖ ≤ cond(A)‖∆b‖/‖b‖

(c) [3 pts] If A is a 2× 2 matrix with ‖A‖ = 2, is it possible that A

[
1
0

]
=

[
3
0

]
? Give a reason.

Solution: No. We have |‖A
[
1
0

]
‖ ≤ ‖A‖‖

[
1
0

]
‖ = 2 · 1 = 2 but ‖

[
3
0

]
‖ = 3.

(d) [3 pts] Find the norm and condition number of

[
0 2
1 0

](
=

[
0 1
1 0

] [
1 0
0 2

])
.

Solution: Since U =

[
0 1
1 0

]
satisfies U−1 = UT (= U), it is an orthogonal matrix. Thus multiplication by U

doesn’t change the norm. So ‖
[
0 2
1 0

]
‖ = ‖

[
1 0
0 2

]
‖ = 2. Also

[
0 2
1 0

]−1

=

[
1 0
0 2

]−1

U−1 =

[
1 0
0 1/2

]−1

U so

‖
[
0 2
1 0

]−1

‖ = 1. Therefore cond

[
0 2
1 0

]
= 2 · 1 = 2.
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[15] 2.

(a) [2 pts] Write down the definition of a Hermitian matrix.

Solution: A is Hermitian if A = A∗, i.e., A equals its conjugate transpose.

(b) [3 pts] TRUE or FALSE: Eigenvectors for distinct eigenvalues are orthogonal for a real symmetric matrix. Justify your
answer.

Solution: TRUE. Eigenvectors of Hermitian matrices are real since ifAx = λx then λ = 〈x,Ax〉/‖x‖2 = 〈Ax, x〉/‖x‖2 =
λ [It was okay to assume this is known]. Then if Ax1 = λ1x1 and Ax2 = λ2x2 with λ1 6= λ2 then λ1〈x2, x1〉 =
〈x2, λ1x1〉 = 〈x2, Ax1〉 = 〈Ax2, x1〉 = 〈λ2x2, x1〉 = λ2〈x2, x1〉 = λ2〈x2, x1〉. This is only possible if 〈x2, x1〉 = 0

(c) [3 pts] TRUE or FALSE: If a square matrix has repeated eigenvalues, then it cannot be diagonalized. Justify your answer.

Solution: FALSE. The matrix

[
1 0
0 1

]
has repeated eigenvalues and is diagonal, hence diagonalized by I.
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(d) [2 pts] Write down the definition of a stochastic matrix.

Solution: A matrix is stochastic if it has non-negative entries and its columns sum to 1.

(e) [3 pts] What can you say about the eigenvalues and eigenvectors of a stochastic matrix?

Solution: 1) There is an eigenvalue λ1 = 1. 2) The other eigenvalues satisfy |λi| ≤ 1, and 3) The eigenvector for the
eigenvalue 1 can be chosen to have non-negative entries.

(f) [2 pts] What can you say about the eigenvalues and eigenvectors of a stochastic matrix if all the entries are strictly positive?

Solution: Same as above except 2’) The other eigenvalues satisfy |λi| < 1, and 3’) The eigenvector for the eigenvalue
1 can be chosen to have positive entries.
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[15] 3. Suppose that A is a real symmetric matrix.

(a) [5 pts] Explain how to find the largest (in absolute value) eigenvalue of A using the power method.

Solution: Choose a random vector x0, then define xn for n = 1, 2, 3, . . . by xn+1 = Axn/‖Axn‖. This sequence
will converge for large n (possibly with sign flips for a negative eigenvalue) provided the largest eigenvalue in absolute
value, has absolute value strictly larger than the rest and x0 has a component in the direction of the corresponding
eigenvector. After the sequence has converged to x∗, λ = 〈x∗, Ax∗〉.

(b) [5 pts] Explain how to find the eigenvalue of A that is closest to 2 using the power method.

Solution: Choose a random vector x0, then define xn for n = 1, 2, 3, . . . by xn+1 = (A − 2I)−1xn/‖(A − 2I)−1xn‖.
After the sequence has converged to x∗, λ = 〈x∗, Ax∗〉.

(c) [5 pts] Write down the MATLAB/Octave commands that implement the procedure in (b) with N iterations. Assume that
A and N have been defined in MATLAB/Octave, and that the size of A is 1000× 1000.

Solution:

> x = rand(1000,1);

> for n=[1:N]

> y=(A-2*eye(1000))\x;

> x = y/norm(y);

> end

> lambda = dot(x, A*x)
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[13] 4. Let S be the subspace of R3 spanned by

1
1
1

,

 2
−1
−1

 and

4
1
1

. Given the MATLAB/Octave calculation

> rref([1 2 4; 1 -1 1;1 -1 1])

ans =

1 0 2

0 1 1

0 0 0

(a) [7 pts] Find the matrix P that projects onto S.

Solution: The calculation shows that the S is spanned by the independent vectors [1, 1, 1]T and [2,−1,−1]T . Let

A =

1 2
1 −1
1 −1

. Then P = A(ATA)−1AT which after a short calculations (omitted) gives P =

1 0 0
0 1/2 1/2
0 1/2 1/2

.

(b) [6 pts] Write down the MATLAB/Octave commands that find the vector in S closest to

1
0
0


Solution:

> P = [1 0 0; 0 0.5 0.5; 0 0.5 0.5]

> x = [1 0 0]’

> P*x

(In fact x ∈ S already so Px = x.)
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[15] 5. Consider the following graph, interpreted as a resistor network with all resistances R = 1.

1 32

4 5 6

1 2

3 4

6 7

5

(a) [5 pts] Write down the incidence matrix D and the Laplacian matrix L for this graph. Show that (for any graph)
N(L) = N(D). Is it true that R(DT ) = R(L)? Give a reason.

Solution:

D =



−1 1 0 0 0 0
0 −1 1 0 0 0
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0
0 0 0 0 −1 1



L =


2 −1 0 −1 0 0
−1 3 −1 0 −1 0
0 −1 2 0 0 −1
−1 0 0 2 −1 0
0 −1 0 −1 3 −1
0 0 −1 0 −1 2


Since the resistances are all 1, L = DTD. So if Dv = 0 then Lv = DTDv = DT 0 = 0. On the other hand if
Lv = 0 then DTDv = 0 so 〈v,DTDv〉 = 〈Dv,Dv〉 = ‖Dv‖2 = 0 so Dv = 0. This shows N(D) = N(L). Then
R(DT ) = N(D)⊥ = N(L)⊥ = R(LT ) = R(L).

(b) [5 pts] Write down 2 independent loop vectors. Is any other loop vector a linear combination of these? Give a reason.

Solution: Any two of [1, 0,−1, 1, 0,−1, 0]T , [0, 1, 0,−1, 1, 0,−1]T and [1, 1,−1, 0, 1,−1,−1] are independent loop vec-
tors. Loop vectors form a basis for N(DT ). To compute dim(N(DT )) start with dim(N(D)) = 1 since the graph is
connected. Thus dim(R(D)) = 6 − 1 = 5 = dim(R(DT )). Thus dim(N(DT )) = 7 − 5 = 2. So any two independent
vectors in N(DT ) form a basis, and any other loop vector (in fact any other vector in N(DT )) is a linear combination
of them.
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(c) [5 pts] Suppose that by attaching a battery, the voltage at vertex 1 is held at b1 and the voltage at vertex 2 is held at b2.
Write down vectors v and J so that the equation Lv = J describes this situation. Explain what each entry of v and J
represents, and how you can use the entries to compute the effective resistance between vertices 1 and 2.

Solution: v = [b1, b2, v3, v4, v5, v6]T and J = [c,−c, 0, 0, 0, 0]T where b1 and b2 represent the battery voltages at
vertices 1 and 2, v3, . . . , v6 are the voltages of the remaining vertices, c and = c represent the current flowing in and
out of the circuit from the battery, and the remaining entries of J are zero due to Kirchhoff’s law. Using the entries of
v and J to write the effective resistance, we have Re = (b2 − b1)/c.
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[15] 6.
Consider the same graph as in the previous question, now interpreted as an internet where the vertices represent web pages
and the arrows represent links.

1 32

4 5 6

(a) [5 pts] Write down the stochastic matrix associated with the PageRank algorithm with no damping. Explain what you
are doing with vertex 6.

Solution:

P =


0 0 0 0 0 1/6

1/2 0 0 0 0 1/6
0 1/2 0 0 0 1/6

1/2 0 0 0 0 1/6
0 1/2 0 1 0 1/6
0 0 1 0 1 1/6


Since there are no outgoing links from vertex 6, we distribute the probability equally over the whole net. Alternatively
we could make a single link from vertex 6 to iteself in which case the last column becomes [0, 0, 0, 0, 0, 1]T . In this case
the limiting distribution will be concentrated just on vertex 6.

(b) [4 pts]

What is the stochastic matrix associated with the PageRank algorithm with damping factor α = 1/2. What happens
to the eigenvalues as α tends to 0 (complete damping)?

Solution: Let Q be the matrix with every entry 1/6. Then the new stochastic matrix is S = (1/2)P + (1/2)Q. As α
tends to zero the eigenvalues of Sα = αP + (1−α)Q tend to the eigenvalues of Q. But Q is a projection matrix onto a
on dimensional space. Thus Q has one eigenvalue of 1 and all the rest zero.
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(c) [3 pts]

Starting with equal probabilities for each page, what are the probabilities of being on each page after one step (with
α = 1/2)? Based on this calculation, which page has the highest rank?

Solution: If x0 = (1/6)[1, 1, 1, 1, 1, 1]T then Px0 = (1/36)[1, 4, 4, 10, 13]T and Qx = (1/6)[1, 1, 1, 1, 1, 1]T . Thus
Sx0 = (1/72)[7, 10, 10, 10, 16, 19]T so page 6 has the highest rank after one step.

(d) [3 pts]

Write down the MATLAB/Octave code that would compute the ranking of each page using the eig command.

Solution: Assuming that S has been defined in MATLAB/Octave,

> [V,D]=eig(S)

computes the eigenvalues and vectors. Assuming that the eigenvalue 1 is the first diagonal entry in the matrix D, the
corresponding eigenvector is V (:, 1). To get the ranking we must scale so that the sum is one:

> V(:,1)/sum((V:,1))
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[15] 7. Suppose that the matrix A has the following singular value decomposition:

A =

[
0 1
1 0

] [
σ1 0 0
0 σ2 0

] 1/
√

2 1/
√

2 0
0 0 1

−1/
√

2 1/
√

2 0

 .
where σ1 ≥ σ2 > 0.

(a) [5 pts] What are ‖A‖ and rank(A)

Solution: ‖A‖ = σ1 is the largest singular value. The rank of A is number of (non-zero) singular values. So rank(A) = 2.

(b) [5 pts] Write down an orthonormal basis for N(A) and an orthonormal basis for R(A).

Solution: We pick out the appropriate columns of U and V (where A = UΣV T . The third column of V , namely
[−1/

√
2, 1/
√

2, 0] is an orthonormal basis for N(A) while the columns of U , namely [0, 1]T and [1, 0]T form a basis for
R(A).

(c) [5 pts] What are the eigenvalues and eigenvectors of A∗A and AA∗?

Solution: A∗A = V ΣTΣV T = V

σ2
1 0 0
0 σ2

2 0
0 0 0

V T so the eigenvalues are σ2
1 , σ2

2 and 0 and the eigenvectors are

columns of V , i.e., [1/
√

2, 1/
√

2, 0], [0, 0, 1]T and [−1/
√

2, 1/
√

2, 0]. Similarly, AA∗ has eigenvalues σ2
1 and σ2

2 with
eigenvectors [0, 1]T and [1, 0]T .

The End
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