Final Exam

Friday, December 15, 2006.

No bOoks, NOTES OR CALCULATORS

Problem 1. (10 points)
(The scalar field is \mathbb{R}.) Consider the matrix A and column vector \vec{b} :

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
2 & 3 & 4
\end{array}\right) \quad \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(a) (6 points) Find the $P A=L U$ factorization for A.
(b) (2 points) Recall that the $P A=L U$ factorization can be used to rewrite the system $A \vec{x}=\vec{b}$ as two systems with triangular coefficient matrix. Write down these two triangular systems.
(c) (2 points) Solve the two triangular systems to find all \vec{x} such that $A \vec{x}=\vec{b}$.

Problem 2. (10 points)
(The scalar field is \mathbb{R}.) Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 0 & 3 & 4 \\
2 & 4 & 3 & 0 & 5 \\
1 & 2 & -1 & 5 & 5
\end{array}\right)
$$

(a) Find a basis for the nullspace of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the left nullspace of A.
(d) Find a basis for the row space of A.

Problem 3. (10 points)
Consider the discrete dynamical system

$$
\left(\begin{array}{c}
a_{n+1} \\
b_{n+1} \\
c_{n+1}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 1 \\
3 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right)
$$

which describes the evolution of the vector $\left(\begin{array}{lll}a & b & c\end{array}\right)^{T}$.
(a) (2 points) Explain what a Markov matrix (stochastic matrix) is and why the coefficient matrix of this discrete dynamical system is a Markov matrix.
(b) (6 points) Find a fixed vector for this discrete dynamical system, i.e., a vector $\left(\begin{array}{lll}a & b & c\end{array}\right)^{T}$ such that

$$
\left(\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right)=\left(\begin{array}{l}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right)
$$

for all n.
(c) (2 points) Find the limit of the vector $\left(\begin{array}{lll}a_{n} & b_{n} & c_{n}\end{array}\right)^{T}$ as $n \rightarrow \infty$ when the initial vector is

$$
\left(\begin{array}{l}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
39
\end{array}\right) .
$$

Problem 4. (15 points)
Consider the real matrix

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-8 & -2
\end{array}\right)
$$

(a) (7 points) use complex numbers to diagonalize A, this means to find matrices S, Λ, and S^{-1}, such that

$$
A=S \Lambda S^{-1}
$$

where Λ is diagonal.
(b) (2 points) Write down (using complex numbers) the general solution of the system of differential equations

$$
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)
$$

(c) (2 points) Discuss the long term behaviour of the solutions of $\vec{x}^{\prime}=A \vec{x}$.
(d) (2 points) Solve the initial value problem

$$
x_{1}^{\prime}(t)=2 x_{1}(t)+x_{2}(t) \quad x_{2}^{\prime}(t)=-8 x_{1}(t)-2 x_{2}(t) ; \quad x_{1}(0)=3 \quad x_{2}(0)=-2
$$

(e) (2 points) Write down a (real!) basis for the real vector space of all differentiable functions $\vec{x}(t): \mathbb{R} \rightarrow \mathbb{R}^{2}$, satisfying $\vec{x}^{\prime}(t)=A x(t)$, for all t.

Problem 5. (8 points)
Consider the real matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(a) (2 points) Explain what property the matrix A has, which assures that you can diagonalize it without the help of complex numbers.
(b) (6 points) find a real matrix S and a diagonal matrix D, such that

$$
A=S D S^{T}
$$

Problem 6. (12 points)
Consider the real matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(a) (6 points) Find the $Q R$ factorization of A.
(b) (3 points) Find the least-squares 'solution' to $A \vec{x}=\vec{b}$, where

$$
\vec{b}=\left(\begin{array}{c}
1 \\
2 \\
0 \\
-1
\end{array}\right)
$$

(c) (3 points) Find the projection of \vec{b} onto the column space of A.

Problem 7. (12 points)
Decide whether or not the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) The product of two orthogonal matrices is orthogonal.
(b) If $A B=I$, then $B A=I$. (Warning: do not assume that A and B are square matrices.)
(c) For every 8×5 matrix A,

$$
\operatorname{dim} N(A) \geq 3
$$

(d) For every 5×5 matrix A with real entries,

$$
\operatorname{det}\left(A^{T} A\right) \geq 0
$$

(e) If $A \vec{x}=\vec{b}$ and $A^{T} \vec{y}=\overrightarrow{0}$, then $\vec{y}^{T} \vec{b}=0$.

Problem 8. (8 points)
Let

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & x \\
1 & 0 & x & 1 \\
1 & x & 0 & 1 \\
x & 1 & 1 & 0
\end{array}\right)
$$

(a) Calculate the determinant $\operatorname{det} A$.
(b) Find all x such that $\operatorname{det} A=0$.

