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[18] 1. Short-Answer Questions. Put your answer in the box provided but show your work also.
Each question is worth 3 marks, but not all questions are of equal difficulty. Full marks will
be given for correct answers placed in the box, but at most 1 mark will be given for incorrect
answers. Simplify your answer as much as possible in this question.

(a) Evaluate /1(\/?—1- (22)Y3) dx

Answer

™
(b) Evaluate / | cos z| dz. You must simplify your answer completely.
0

Answer

(¢) Find a number b > 0 such that the function f(z) = x — 1 has average value 0 on the
interval [0, b].

Answer

Continued on page 3
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(d) The first two nonzero terms in the power-series representation in powers of = (i.e. the
x

Maclaurin series) for / sin(t?) dt have the form ax® + bx”, for some constants a and b.

Find the value of b.

Answer

(e) Find the x-coordinate of the centroid of the region below y = 1/2% and above the z-axis,
fromz =1toz =2.

Answer

(f) Evaluate / e** dx

— 00

Answer

Continued on page 4
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Full-Solution Problems. In questions 2-9, justify your answers and show all your work. If
a box is provided, write your final answer there. Unless otherwise indicated, simplification of
answers is not required in these questions.

2. (a) [6] The bounded region that lies between the z-axis and the curve y = 1 — 22 is revolved
about the line y = —2. Find the volume of the resulting solid of revolution.

Answer

(b) [6] Find the area of the region enclosed by one loop of the polar curve r = 4 cos 26.

Answer

Continued on page 5
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1
(c) [6] Find the length of the curve y = 22 — %, for 1 <z <2

Answer

Continued on page 6
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[24] 3. Evaluate the following integrals.

@ [ -
/ x(z? +9) de
Answer
(b) [6]
dx
Answer

Continued on page 7
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(c) [6]
/ rtan~ 'z dr

(Note: tan~!z is also denoted arctanz.)

Answer

3
/ V81 — x4 dx
0

Hint: Use a substitution and interpret the result as an area.

Answer

Continued on page 8
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[8] 4. A colony of ants builds an anthill that is in the shape of a cone whose base, at ground level, is
a circle of diameter 1 ft and whose height is also 1 ft. How much total work, in ft-1bs, is done
by the ants in building the anthill? For the density of sand, use the value 150 1b/ft3.

Answer

Continued on page 9
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[8] 5. An unknown function f(x) has the following values:

(a) [2] Write down the trapezoidal approximation T} for f04 f(z) dx.

Answer

(b) [2] Write down the Simpson’s approximation Sy for f04 f(z) dx.

Answer

(c) [4] Tt is known that the fourth derivative f(*)(z) lies between —3 and 2 on the interval
[0,4]. What is the largest possible value that f04 f(z) dzx could have? You may use the
fact that if | f*)(z)| < K on the interval [a, b], then the error in using S, to approximate

f: f(x) dx has absolute value less than or equal to K(b— a)5/180n*.

Answer

Continued on page 10
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[8] 6. A swimming pool is 10 m wide and 20 m long and its bottom is an inclined plane, the shallow
end having depth 1 m and the deep end 2 m. If the pool is full of water, find the hydrostatic
force, in Newtons (N), on the long vertical side of the pool that is shaded in the diagram
below. For the acceleration due to gravity use the value g = 9.8 m/s? and for the density of
water use the value p = 1000 kg/m?3.

Answer

20 m

;':<~—> A

Continued on page 11
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[8] 7. Find the solution of the differential equation

dL
— = kL%’Int
i .

that satisfies L(1) = 1. Here, k is a constant that will appear in your final answer.

Answer

Continued on page 12
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[4] 8. Evaluate fol (6 — 32?) dx by computing the limit of the right-endpoint Riemann sums R,, as
n — 00. You may use the formula Y. i = n(n+ 1)(2n+1)/6. No credit will be given for

computing this integral using antidifferentiation, although you may use antidifferentiation to
check your answer.

Continued on page 13
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[4] 9. For any real number z, define g(z) = fol (vet —t)? dt. Find the minimum value of g(x).

Answer

The End



