This project involves the scattering of incident pulses propagating in a medium having a wave speed \(c(x) \) with a simple smooth transition from a constant wave speed \(c_1 \) when \(x = -\infty \) to a constant wave speed \(c_2 \) when \(x = +\infty \). The problem involves studying the effects of the smoothness of the transition, the asymptotic ratio of wave speeds \(c_2 / c_1 \) and the shape of an incident pulse on the transmission and reflection properties of scattered waves. The method to be investigated is based on a superposition of special invariant solutions arising from nonlocal symmetries of such a variable wave speed wave equation.

Background required: At least 80% in senior level Honours Physics courses, high standing in Math 300, 316 and 400 plus a background in using symmetries to solve partial differential equations.