Equality of Schur Q-functions

Farzin Barekat *
Mathematics Department
The University of British Columbia
Vancouver, B.C. Canada V6T 1Z2
farzin.barekat@yahoo.com

September 2, 2008

In learning about quasisymmetric functions I was naturally led to investigate equality of Schur Q-functions. What follows is three of my most significant results produced during my summer research, which will result in a journal article joint with Steph van Willigenburg.

1 Definitions

• Let α° and α^t represent, respectively, the rotation by 180 degrees and transpose of the composition α.

• Let r_α denote the skew Schur Q-function whose shifted diagram corresponds to the ribbon α.

• Let s_D denote the skew Schur Q-function whose shifted diagram corresponds to the ordinary skew diagram D.

• Let \bullet represent the bullet operation: $\alpha\bullet\beta$ means that we take $|\alpha|$ copies of β, alternatively transpose them, and then glue them according to α.

2 Three of my results

Theorem 2.1 For compositions α, β and skew diagram D, if $r_\alpha = r_\beta$ then $s_\alpha\bullet D = s_\beta\bullet D$.

Theorem 2.2 The skew diagram $\alpha_1 \bullet \cdots \bullet \alpha_m \bullet D$ has the same ordinary skew Schur Q-function as those skew diagrams $\beta_1 \bullet \cdots \bullet \beta_m \bullet E$ where $\beta_i = \{\alpha_i, \alpha_i^t, \alpha_i^\circ, (\alpha_i^t)^\circ\}$ for $1 \leq i \leq m$, and $E = \{D, D^t, D^\circ, (D^t)^\circ\}$.

Theorem 2.3 (i) For $|\alpha|$ odd, the ribbon Schur Q-function r_α is irreducible considered as an element of $\mathbb{Z}[q_1, q_3, \ldots]$.

(ii) For $|\alpha|$ even, there are infinitely many examples in which r_α is irreducible and infinitely many examples in which r_α is reducible.

Research supported by NSERC