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Over the past sixteen weeks, the authors have been fortunate enough to work on a
project proposed and lead by Dr. Stephen Gustafson of the University of British Columbia.
Entitled Stability of Solitons, the project’s primary objective was to study the orbital
stability of solitary wave solutions of certain nonlinear differential equations.

1. Introduction

Throughout, let u = u(t, x) be a function with (t, x) ∈ R× R.
The two nonlinear equations that were of most interest to us in this project were the

Korteweg-de Vries Equation (KdV),

(1) ut + (uxx + u2)x = 0

and the focusing cubic nonlinear Schrödinger equation,

(2) iut + uxx+ |u|2u = 0.

In addition, a cubic-quintic nonlinear Schrödinger equation, in which a quintic term −|u|4u
is added to (2), was studied to some extent. Each of these equations gives rise to solitary
wave solutions [5], or solitons, which take the form u(t, x) = Q(x−ct) or u(t, x) = eiωtQ(x−
ct) in the case of (1) and (2) respectively. For a specific solitary wave profile Q, we define
the family of solitons ΣQ to be the set of spatial translates (and phase rotations, in the case
of (2)) of Q. While an individual soliton solution is not stable, it is sometimes possible to
establish the orbital stability of ΣQ, which is defined as follows:

Definition. Let Q(t, x) ∈ ΣQ be a solitary wave, and let u(t, x) be another solution. Then
Q is orbitally stable with respect to the norm ‖ · ‖X , if ∀ε > 0, ∃δ > 0 such that

(3) ‖u(0, x)−Q(0, x)‖X < δ =⇒ inf
Q̃∈ΣQ

‖Q̃(t, x)− u(t, x)‖X ≤ ε,∀t > 0.

Remark: The above definition is norm-dependent, meaning orbital stability with respect
to some norm ‖· ‖a tells us no stability information with respect to some other norm ‖· ‖b.
This follows from the fact that norms are not equivalent on infinite dimensional metric
spaces.

With this in mind, preliminary investigations were carried out using numerical simula-
tions which modelled small perturbations of solitons in various norms. Using an operator
splitting algorithm (see [2]), we were able to look at long-time behaviour of the cubic (2)

and the cubic-quintic Schrödinger equations, gathering ample evidence of H
1
2 (R) stability
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of the former, and L2(R) stability of the latter. These results motivated us to turn from
simulations to analysis, in an effort to establish an orbital stability proof by the end of the
summer term.

2. Results

A fundamental difference between (2) and the Cubic-Quitnic has to do with the notion of
complete integrability. A partial explanation of this concept is that a completely integrable
system gives rise to an infinite number of conserved quantities. This turns out to be
extremely useful, and the majority of stability proofs of completely integrable systems
exploit this feature (for instance, see [1], [3], [4]). We attempted to generalize the Bäcklund
transformation associated with (2), but did not have any success.

We then considered the orbital stability of periodic travelling waves of the KdV equation.
These periodic waves have a close relation to solitons: as the period approaches ∞, the
periodic waves become indistinguishable in shape from solitons. In our research, we found
the result [1], which guarantees the stability in the space L2 of KdV solitons by using a
simple integrable transformation known as the Gardner transformation. We are currently
finishing a result which would ensure the stability in L2 of some KdV cnoidal waves via
the same transformation. That is, we aim to prove the following theorem:

Theorem. There exist parameters α0, A0 > 0 such that the following holds: Let u0 ∈
L2
per(R), and let there be some α ∈ (0, α0) such that

(4) ‖u0 −Q‖L2
per(R) ≤ α.

Then, there exists an x(t) such that the solution u(t) ∈ L2
per(R) of (1) with initial data u0

satisfies orbital stability:

(5) sup
t≥0
‖u(t)−Q(· − x(t))‖L2

per(R) ≤ A0α.

Note: We use the notation L2
per to mean the space of square-integrable functions with

period P:
L2

per(R) := {u ∈ L2(R) : u(·, x) = u(·, x+ P )}
Its norm is the same as the standard L2-norm, only restricted to (0, P ].
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