This summer I worked with Dr. Richard Anstee on the problems of forbidden submatrices and configurations, topics of extremal combinatorics. Given a $k \times l$ matrix F whose entries are all 0's or 1's (a $(0,1)$-matrix), we consider an m-rowed $(0,1)$-matrix A with no repeated columns (A is simple), and no submatrix F. We define $\text{Avoids}(m, F)$ to be the set of such matrices A, and $fs(m, F)$ to be the maximum number of columns of any $A \in \text{Avoids}(m, F)$. There is a conjecture of Anstee, Frankl, Füredi, and Pach that $fs(m, F) \in O(m^k)$. Similarly, we can consider the problem of forbidding any row or column permutation of F (a configuration of F), defining $\text{Avoid}(m, F)$ to be the set of simple $(0,1)$-matrices A with no configuration F and $\text{forb}(m, F)$ to be the maximum number of columns of such an A. We seek to prove bounds on $fs(m, F)$ and $\text{forb}(m, F)$ for specific F to gain insight.

1 Forbidden Submatrices

A structural result was achieved for the submatrix

$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. $$

Keeping track of instances of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and noting that if it occurs on distant rows an instance is present on every intermediate row, we motivate the following definition.

Definition 1.1 The span C_α of a column α is the set of rows between its top 1 and bottom 0, inclusive.

For example, if $\alpha = (0, 1, 1, 0, 1)^T$, $C_\alpha = \{2, 3, 4\}$. The following is our result.
Lemma 1.2 There exists a matrix $A \in Avoids(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$ with $|C_\alpha|$ increasing.

Additionally, we made some observations regarding the submatrix

$$ F = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}. $$

From constructions avoiding the submatrix

$$ \Gamma = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} $$

we considered columns of a given column sum and made the following definitions:

Definition 1.3 A primary column is a column whose top 1 is in a row where no previous column of that column sum had its top 1.

Definition 1.4 A secondary column is a column that is not a primary column.

Note that every secondary column creates the submatrix Γ with a primary column. There are $m - k + 1$ primary columns of B_k given by the choices of the locations of the top 1, so we aim to produce a bound on the number of secondary columns. We can assign to every secondary column β a row j such that Γ occurs with right column β and bottom row j. If row j is already associated with a row δ, we could show that a new row k could be assigned to a column to resolve this conflict. However, it is possible that a column β would be assigned a row j, creating an overlap that assigns it to row k, and conflicting with a previous column to assign it back to row j. The presence of these cycles prevented us from proving a linear bound. A number of results regarding these cycles were provided, however.

2 Forbidden Configurations

We attempted to produce a quadratic bound for the configuration

$$ F = t \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}. $$

Using inductive techniques applied to a previous configuration, along with a result of Balogh and Bollobás, we attempted to deduce the structure of A.
References
