
 Mathematical models are used to study a wide variety of natural processes.  Models vary widely in 

complexity, from one equation to page-long systems.  In the case of mathematical epidemiology, there 

are several simple models that form the basis for the more complex models that are used to study 

specific diseases.  The focus of this paper is the behaviour of one simple model and three more complex 

related models. 

 The basic compartmental model for epidemics was developed by W.O. Kermack and A.G. McKendrick 

in 1927.  This model separates the total population (of constant size ) into three classes.  The first, 

, is the susceptible class, which denotes the number of people who have not been infected at time 

.  The second, , is the infective class, which denotes the number of people who are infected and 

contagious at time .  The third, , is the removed class, which denotes the number of people who 

cannot become infected or spread infection because they have recovered from the disease and have 

developed immunity. 

 The model is formulated using three differential equations that describe the flow into and out of 

each class, or compartment.  This only makes sense in a population large enough that the size of each 

compartment can be considered differentiable by time, so we will assume that we are dealing with such 

a population.  Called the  model, it is 

 

 
 

 

 

(1) 

 

The model is based on the following assumptions: 

(i) An average member of the population makes contact sufficient to transmit infection with  

others per unit time. 

(ii) Infectives leave the infective class at rate  per unit time. 

(iii) The total population is a constant size. 

(iv) There is no entry into or departure from the population. 

Assumption (iii), it should be noted, implies that .  This means that  is determined 

once  and  are known.  Therefore, we can simply focus on  and , along with their initial 

conditions 

 

   

 

while conducting our analysis. 



 The question we would like this model to answer is whether a disease will die out or result in an 

epidemic.  Therefore, a quantity with a threshold value (which determines whether there is an epidemic 

or not) would be useful.  Fortunately, such a quantity can be found in the basic reproduction number. 

 The basic reproduction number, or , is the number of secondary infections caused by a 

introducing one infective into a wholly susceptible population.  If , the disease dies out 

immediately and there is no epidemic, but if , an epidemic occurs.  According to the 

assumptions above, an infective makes  contacts per unit time and the mean infective period is .  

Therefore, . 

 The disease dies out when , and there is no epidemic if  for all .   when 

, or equivalently, .  Inspection of (1) shows that  for all , and thus, whether 

there is an epidemic or not, eventually .  This means the disease will always die out eventually, 

even if an epidemic occurs initially.  It also implies that there will be no epidemic if , or .  

Since , if , there will be no epidemic . 

 A more complicated model than (1) could include natural births and deaths.  In this case, the disease 

being modelled is presumed to be an endemic one – that is, the disease being modelled is assumed to 

persist in the population for a significantly longer period than one modelled using the basic  model. 

 For simplicity, the birth and death rates are set equal to each other, allowing this model to also have 

a constant population size, .  The  model with natural births and deaths is 

 

 
 

 

 

(2) 

 

While assumption (iv), above, no longer holds, the first three assumptions continue to apply to (2).  For 

this model, 

 

 
 

 

 

PROOF WHEN R < 1 



 We would like to show that  decreases monotonically to zero when  for (2) as well as (1).  

 when .  If , then .  Since  and , by 

assumptions (i) and (iii), respectively, this implies that .  This is equivalent to 

, which implies that indeed . 

 

 

 

 When , the situation is more complicated. In this case, and for all the following models, a 

proof is not attempted.  Instead, the behaviour of the system is investigated numerically.  Figure 1a 

shows the number of infectives predicted by (1) when .  The disease eventually dies out when 

.  On the other hand, the disease modeled by (2) does not die out, and after some initial 

oscillations, approaches a positive limit, as shown by figure 1b.  However, figure 1c shows that as 

, its behaviour begins to approach that of (1). 

 Another possible extension of the basic  model is to include disease deaths in the model.  This 

model would be used for a potentially fatal epidemic disease.  In this case, a fraction, , of 

those removed from the infective class develop immunity, while the remainder die from the disease.  

This model is 

 

 
 

 

 

(3) 

 

and neither assumption (iii) nor (iv) applies, though (i) and (ii) still do.  Since  is no longer constant, an 

equation for it is required.  That equation is 

 



   

 

and , as before.  This means that the fourth quantity is determined once three are 

known.  Because of this, it is possible to use , , and  in the analysis and to leave out .  The 

equation for  is 

 

 
 

 

 

 

 

 As can be seen from figure 2, the behaviour of (1) and (3) are identical when .  Because 

neither  nor  rely on , this is to be expected.  The disease deaths are not changing the rate of flow 

from , they are simply redirecting a fraction of that flow. 

 The final model that will be analyzed is one that includes both natural births and deaths and disease 

deaths.  This corresponds to a potentially fatal endemic disease, and the model contains elements from 

all three of the models already analyzed.  The model is 

 

 
 

 

 

(4) 

 

and, again, the equation for  is 

 

   

 

Once again,  and only , , and  will be used in the analysis. 



 

 

 

 For this model, because  depends on  – the birthrate depends on population size – disease 

deaths have an effect on the behaviour of the disease.  As shown in figure 3b, this effect is significant.  In 

fact,  


