
LECTURE 4

Curie-Weiss model. Phase transition.

Metastable regime, Eyring-Kramers formula.



Complete graph with N = 9 vertices
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GLAUBER DYNAMICS ON THE COMPLETE GRAPH

Let G = (V,E) be a connected graph. Ising spins are

attached to the vertices V and interact with each other

along the edges E.

1. The energy associated with the configuration σ =

(σi)i∈V ∈ Ω = {−1,+1}V is given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E
σiσj − h

∑
i∈V

σi

where J > 0 is the ferromagnetic interaction strength and

h > 0 is the external magnetic field.
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2. Spins flip according to Glauber dynamics

∀σ ∈ Ω ∀ j ∈ V : σ → σj at rate e−β[H(σj)−H(σ)]+

where σj is the configuration obtained from σ by flipping
the spin at vertex j, and β > 0 is the inverse temperature.

3. The Gibbs measure

µ(σ) =
1

Ξ
e−βH(σ), σ ∈ Ω,

is the reversible equilibrium of (σ(t))t≥0.

4. Three sets of configurations play a central role:

m = metastable state

c = crossover state

s = stable state. 3
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•
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•

Caricature of the free energy landscape

– energy and entropy –
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In the Hamiltonian it is natural to pick J = 1/N

with N = |V |, to ensure that the total interaction

of a spin with all the other spins is of order 1.

Because the interaction is mean-field, we can implement a

lumping technique in which we monitor the magnetisation

m ∈ [−1,+1] of the system rather than the configuration

σ ∈ Ω.
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§ EVOLUTION OF THE MAGNETISATION

The lumping shows that the empirical magnetisation

mN(t) =
1

N

∑
i∈V

σi(t)

performs a continuous-time random walk on the 2N−1-grid

in [−1,1], in a potential that is given by the finite-volume

free energy per vertex

fβ,h,N(m) = −1
2m

2 − hm+ β−1IN(m)

with an entropy term

IN(m) = −
1

N
log

( N
1+m

2 N

)
.

EXERCISE! 6



This simplification arises via the mean-field interaction:

H(σ) = −N
[

1
2(mN(t))2 − 1

2 + hmN(t)
]
.

In the limit N →∞, the empirical magnetisation performs
a Brownian motion on [−1,+1], in a potential that is given
by the infinite-volume free energy per vertex

fβ,h(m) = −1
2m

2 − hm+ β−1I(m)

with

I(m) = 1
2(1 +m) log(1 +m) + 1

2(1−m) log(1−m),

where a redundant shift by − log 2 is dropped.

Kramers EXERCISE! 7



m

fβ,h(m)

m∗− m∗+
m∗

−h

1−1

•

•
•

The free energy per vertex fβ,h(m) at magnetisation m

(caricature picture with m = m∗−, c = m∗, s = m∗+).

EXERCISE!
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THEOREM 4.1: Bovier, Eckhoff, Gayrard, Klein 2001

On the complete graph with N vertices, for J = 1/N , β > 1

and h ∈ (0, χ(β)),

ECW
m−N

(τ
m+
N

) = K eNΓ[1 + o(1)], N →∞,

where m−N ,m
+
N are the sets of configurations for which the

magnetization tends to m∗−,m
∗
+,

Γ = β [fβ,h(m∗)− fβ,h(m∗−)]

K = πβ−1

√√√√1 +m∗

1−m∗
1

1−m∗2−

1

[−f ′′β,h(m∗)]f ′′β,h(m∗−)

and

χ(β) =
√

1− 1
β −

1
2β log

[
β

(
1 +

√
1− 1

β

)2
]
.
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β

χ(β)

0

1

1
•

metastable regime

The conditions on β and h are needed to ensure that the

free energy m 7→ fβ,h(m) has a double-well structure.

NOTE: The asymptotics for the crossover time is uniform

in the starting configuration drawn from the set m−N .
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§ CURIE-WEISS IN DISCRETE TIME

1. Lumping works well for the Curie-Weiss model. The
state space is SN ≡ {−1,+1}[N ] with [N ] = {1, . . . , N},
N ∈ N. The Hamiltonian is (add the diagonal term 1

2)

HN(σ) ≡ −
1

2N

∑
i,j∈[N ]

σiσj − h
∑
i∈[N ]

σi, σ ∈ SN .

The fact that the model is mean-field is expressed by the
fact that HN(σ) depends on σ only through the empirical
magnetisation

mN(σ) ≡
1

N

∑
i∈[N ]

σi,

namely,

HN(σ) = −N
(

1
2m

2
N(σ) + hmN(σ)

)
≡ NE(mN(σ)).
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2. Choose a discrete-time dynamics on SN with Metropolis

transition probabilities

p(σ, σ′)

=


N−1 exp

[
−β

[
HN(σ′)−HN(σ)

]
+

]
, ‖σ − σ′‖1 = 2,

0, ‖σ − σ′‖1 > 2,

1−
∑
η 6=σ p(σ, η), σ = σ′,

where ‖ · ‖1 is the `1-norm on SN , and the last line is

put in to obtain a proper normalisation. This dynamics is

reversible w.r.t. the Gibbs measure

µN(σ) =
1

Zβ,N
e−βHN(σ) 2−N , σ ∈ SN .
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3. The magnetisation mN(n) ≡ mN(σ(n)) at time n ∈ N0

can only increase or decrease by 2N−1, and the probability

of doing so only depends on the number of −1’s and +1’s

in the configuration σ(n), namely,

P
(
mN(n+ 1) = m′ | Fn

)
= rN(mN(n),m′), n ∈ N0,

with (Fn)n∈N0
the natural filtration and

rN(m,m′)

=


1−m

2 exp
[
− βN [E(m′)− E(m)]+

]
, m′ = m+ 2N−1,

1+m
2 exp

[
− βN [E(m′)− E(m)]+

]
, m′ = m− 2N−1,

on the state space

ΓN ≡
{
− 1,−1 + 2N−1, . . . ,1− 2N−1,1

}
.
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4. The Markov process is reversible with respect to the

image Gibbs measure

νN(m) =
1

Z̄β,N
e−βNE(m)

( N
1+m

2 N

)
2−N , m ∈ ΓN .

In exponential form the latter can be written as

νN(m) = e−βNf̄N(m),

where

f̄N(m) = fβ,N(m)− inf
m∈ΓN

fN(m),

fN(m) = −1
2m

2 − hm+ β−1IN(m),

with

−IN(m) =
1

N
log

[( N
1+m

2 N

)
2−N

]
.
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5. In the limit as N →∞, ΓN lies dense in [−1,1], and

lim
N→∞

fN(m) = f(m),

lim
N→∞

IN(m) = I(m),

with

f(m) = −1
2m

2 − hm+ β−1I(m),

I(m) = 1
2(1 +m) log(1 +m) + 1

2(1−m) log(1−m).

The latter is the Cramér rate function for coin tossing.

Since I(m) = I(−m) and I(m) ∼ 1
2m

2 as m → 0, we see
that m 7→ f(m) is a double well when β > 1 and h is small
enough. The stationary points of f are the solutions of
the equation

m = tanh[β(m+ h)],

which we refer to as the self-consistency equation.
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m

fβ,h(m)

m∗− m∗+
m∗

−h

1−1

•

•
•

Plot of m 7→ fβ,h(m) on [−1,1] when β > 1 and h ∈ (0, χ(β)).

Henceforth we suppress β, h from the notation.
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6. The above observations show that mN = (mN(n))n∈N0

is a random walk on ΓN ⊂ [−1,1] with a reversible invariant

measure that is close to exp[−βf(m)] for large N .

Clearly, this bring us to a situation where we can obtain

an exact solution. Moreover, since we are on a lattice with

spacing 2/N , in the limit as N →∞ sums appearing in the

exact solution can be approximated by integrals with the

help of saddle-point techniques.
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§ PROOF OF THEOREM 4.1

1. Since (mN(t))t≥0 is a nearest-neighbour random walk

on ΓN , we have, as explained in Lecture 2,

E
m−N

[
τ
m+
N

]
=

∑
m,m′∈ΓN

m−
N
<m≤m+

N
,m′≤m

νN(m′)

νN(m)

1

rN(m,m+ 2N−1)
.

Compute the summand:

rN(m,m+ 2N−1) = 1−m
2 e−βN [E(m+2N−1)−E(m)]+,

νN(m′)

νN(m)
= eβN [fN(m)−fN(m′)].
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In the limit as N → ∞, the sums over m,m′ are domi-

nated by the terms with m → m∗ and m′ → m∗+, since for

these terms fN(m)− fN(m′) is maximal. This explains the

exponential factor in the Eyring-Kramers formula.

2. To get the prefactor we need to look a bit more closely.

Note that

[E(m+ 2N−1)− E(m)]+ = 2N−1[(m+ h) +N−1]+.

For m→ m∗ and N →∞, rN(m,m+ 2N−1) converges to

1−m∗

2
exp(−2β[m∗+ h]+).

As shown in the figure: m∗ < 0. Since m∗ is a solution of

the self-consistency equation

exp(2β[m∗+ h]) = (1 +m∗)/(1−m∗),
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it follows that m∗+ h < 0. Therefore, for any ε > 0,

E
m−N

[
τ
m+
N

]
= eβN [fN(m∗)−fN(m∗−)] 2

1−m∗ [1 + o(1)]×∑
m,m′∈ΓN

|m−m∗|<ε, |m′−m∗−|<ε

eβN [fN(m)−fN(m∗)]−βN [fN(m′)−fN(m∗−)].

3. By Stirling’s formula, for any m ∈ (−1,1),

IN(m)− I(m) = [1 + o(1)]
1

2N
log

(
πN(1−m2)

2

)
and hence

eβN [fN(m)−f(m)] = [1 + o(1)]

√
πN(1−m2)

2
.
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Consequently,

eβN [fN(m∗)−fN(m∗−)]

= [1 + o(1)] eβN [f(m∗)−f(m∗−)]

√√√√1−m∗2

1−m∗2−
.

Inserting this expansion into the earlier expression, we get

E
m−N

[
τ
m+
N

]
= eβN [f(m∗)−f(m∗−)] 2

1−m∗

√√√√1−m∗2

1−m∗2−
[1 + o(1)]×

∑
m,m′∈ΓN

|m−m∗|<ε, |m′−m∗−|<ε

eβN [f(m)−f(m∗)]−βN [f(m′)−f(m∗−)].
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4. To evaluate the sum we write the Taylor expansions

f(m)− f(m∗) = 1
2(m−m∗)2f ′′(m∗) +O((m−m∗)3),

f(m′)− f(m∗−) = 1
2(m′ −m∗−)2f ′′(m∗−) +O((m′ −m∗−)3),

where we use that f ′(m∗) = 0 and f ′(m∗−) = 0. Changing
to new variables u ≡

√
N(m−m∗) and u′ ≡

√
N(m′ −m∗−),

we see that the sum equals

[1 + o(1)]
N

4

∫
R

du
∫
R

du′ exp
[

1
2βf

′′(m∗)u2 − 1
2βf

′′(m∗−)u′2)
]
.

Since f ′′(m∗) < 0 and f ′′(m∗+) > 0, the integral converges
and equals

2π

β
√

[−f ′′(m∗)] f ′′(m∗−)
.

Combining, we end up with the desired formula in Theorem
4.1, but with an extra N in the prefactor. 2
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The result in THEOREM 4.1 fits the classical Arrhenius law with
activation energy β[f(m∗) − f(m∗−)] and with amplitude given by
the prefactor.

The activation energy coincides with what was found by

Kramers for Brownian motion in a double-well potential,

alluded to in Lecture 1.

The prefactor is off by a factor N , which is due to the fact

that time is discrete and only one spin is flipped per time

step. In the continuous-time version, we speed up time by

a factor N , after which the match is perfect.
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As a corollary we get the exponential law of the metastable
crossover time.

THEOREM 4.2 Bovier, Eckhoff, Gayrard, Klein 2001

As N →∞,

lim
N→∞

P
m−N

 τ
m+
N

E
m−N

[
τ
m+
N

] > t

 = e−t ∀ t ≥ 0.

LOSS OF MEMORY!
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