LECTURE 4

Curie-Weiss model. Phase transition.
Metastable regime, Eyring-Kramers formula.



Complete graph with N = 9 vertices



GLAUBER DYNAMICS ON THE COMPLETE GRAPH

Let G = (V,FE) be a connected graph. Ising spins are
attached to the vertices V and interact with each other
along the edges FE.

1. The energy associated with the configuration o =
(6)icy € Q ={—1,+1}V is given by the Hamiltonian

H(o)=—-J ) O'iO'j—hZO'Z'

(4,J)EE eV

where J > 0 is the ferromagnetic interaction strength and
h > 0 is the external magnetic field.



2. Spins flip according to Glauber dynamics

Vo eQVjeV: o— ol at rate e AH(@)—H ()]

where o7 is the configuration obtained from o by flipping
the spin at vertex 5, and 8 > 0 is the inverse temperature.

3. The Gibbs measure

plo) = 2 e M),

o€ (2,

is the reversible equilibrium of (o(t))>0-

4. Three sets of configurations play a central role:

m — metastable state
C — Crossover state
s — Stable state. 3
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In the Hamiltonian it is natural to pick J = 1/N
with N = |V, to ensure that the total interaction
of a spin with all the other spins is of order 1.

Because the interaction is mean-field, we can implement a
lumping technique in which we monitor the magnetisation
m € [—1,4+1] of the system rather than the configuration

o € ).
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5§ EVOLUTION OF THE MAGNETISATION

The lumping shows that the empirical magnetisation
1
mpy(t) = N > oi(t)
icV
performs a continuous-time random walk on the 2N ~1-grid

in [—1,1], in a potential that is given by the finite-volume
free energy per vertex

fonn(m) = —=3m? — hm + g~ I (m)

with an entropy term

In(m) = —% log (%N)

EXERCISE! §)



This simplification arises via the mean-field interaction:
H(o) = —=N|5(mn(t)? = 5 + hmy(8)].

In the Iimit N — oo, the empirical magnetisation performs
a Brownian motion on [—1,+1], in a potential that is given
by the infinite-volume free energy per vertex

fon(m) = —=Im? — hm + =11 (m)
with

I(m) = 5(1 +m)log(1 +m) 4+ 5(1 —m)log(1 —m),

where a redundant shift by —log?2 is dropped.

Kramers EXERCISE! !



The free energy per vertex fz,(m) at magnetisation m
(caricature picture with m = m*, c =m*, s =m ).

EXERCISE!



THEOREM 4.1: Bovier, Eckhoff, Gayrard, Klein 2001

On the complete graph with N vertices, for J =1/N, > 1
and h € (0,x(5)),

ECYVV(TmN) = KeNT[1 4+ o(1)], N — oo,

where my;, m]"'\} are the sets of configurations for which the
magnetization tends to mi,mj_,

= Bfgn(m™) — fzgn(m)]

i r+Emr 1 1
h=r J 1 —m* 1—m?2 [, (m*)]ff,(m)

and

X(8) = /1 -3 - 55log

5<1+ 1—%)2]. .



x(B)

metastable regime

B

The conditions on 5 and h are needed to ensure that the
free energy m — fz;,(m) has a double-well structure.

NOTE: The asymptotics for the crossover time is uniform
in the starting configuration drawn from the set m;.
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§ CURIE-WEISS IN DISCRETE TIME

1. Lumping works well for the Curie-Weiss model. The
state space is Sy = {—1,4+1}N with [N] = {1,...,N},
N € N. The Hamiltonian is (add the diagonal term 2)

1

HN(O')E—E Y oigj—h ) oy o€ Sn.

The fact that the model is mean-field is expressed by the
fact that Hy (o) depends on o only through the empirical
magnetisation

1
mpy (o) = ~ > oy
1€[N]

namely,

Hy(0) = =N (3m3(0) + hmy(0)) = NE(mp(0)).

11



2. Choose a discrete-time dynamics on Sy with Metropolis
transition probabilities

p(o, ")
(N~lexp [~ [Hy(o') — Hy(0)] 1], llo—o'l1 =2,
= o, lo = o'll1 > 2,
11— S0 p(0,7), oc=0
where || - |1 is the ¢-norm on Sy, and the last line is

put in to obtain a proper normalisation. This dynamics is
reversible w.r.t. the Gibbs measure

1
uy(o) = e_BHN(") Q_N, o€ Sy-
48,N
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3. The magnetisation my(n) = my(o(n)) at time n € Ng
can only increase or decrease by 2N—1, and the probability
of doing so only depends on the number of —1's and +1's
in the configuration o(n), namely,

P(my(n+1) =m'| Fp) = ry(my(n),m’),  neN,
with (Fn)nen, the natural filtration and

rn(m, m')
_ [ exp | — BN[E(m') — E(m)]4|, m/'=m+2N"1,
1+m exp [— BN[E(m") — E(m)]—l-}v m! — m — 2N_1,

on the state space

er{—1,—1+2N—1,...,1—2N—1,1}.
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4. The Markov process is reversible with respect to the

image Gibbs measure

,/N(m)zzl e—BNE(m)(—N )2—N,

B,N

In exponential form the latter can be written as

vy (m) = e—BNJFN(m),
where
fn(m) = fg ny(m) — inf fr(m),
mel
fn(m) = —5m® — hm + B~ Iy (m),
with

(14mp) 27

1
—In(m) = ~ 109
2

mEFN.
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5. In the limit as N — oo, 'y lies dense in [—1, 1], and
Jim fy(m) = f(m),
Aim _Iy(m) = I(m),
with
f(m) = —jm — hm 4+ 87 1I(m),
I(m) = 5(1 + m) log(1 +m) + 5(1 —m) log(1l —m).

The latter is the Cramér rate function for coin tossing.

Since I(m) = I(—m) and I(m) ~ 2m? as m — 0, we see
that m — f(m) is a double well when 8 > 1 and h is small
enough. The stationary points of f are the solutions of
the equation

m = tanh[(m + h)],

which we refer to as the self-consistency equation. 15



Plot of m — fz,(m) on [—1,1] when 5> 1 and h € (0,x(5)).
Henceforth we suppress 5, h from the notation.

16



6. The above observations show that my = (mpy(n))nen,
is a random walk on Iy C [—1, 1] with a reversible invariant
measure that is close to exp[—8f(m)] for large N.

Clearly, this bring us to a situation where we can obtain
an exact solution. Moreover, since we are on a lattice with
spacing 2/N, in the limit as N — oo sums appearing in the
exact solution can be approximated by integrals with the
help of saddle-point techniques.
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§ PROOF OF THEOREM 4.1

1. Since (my(t))t>0 is @ nearest-neighbour random walk
on I, we have, as explained in Lecture 2,
Em]_v[Tm]_i\}}
. Z vy (m) 1
B vy (m) ry(m,m+ 2N-1)

m,m’EI_N

m]_v<m§m]—'\}, m/<m

Compute the summand:
rv(m,m4+2N"1) = 1—Tm e—ﬁN[E(m+2N_1)—E(m)]_|_,

vN(m') _ BN Gm)— iy ()]
vy (m)
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In the limit as N — oo, the sums over m,m’ are domi-
nated by the terms with m — m* and m/ — mj_, since for

these terms fy(m) — fy(m') is maximal. This explains the
exponential factor in the Eyring-Kramers formula.

2. To get the prefactor we need to look a bit more closely.
Note that

[E(m+2N"1) — E(m)l; = 2N [(m +h) + N1

For m — m* and N — oo, ry(m,m 4+ 2N~1) converges to

1 —m*

exp(—28[m™* + h]4).

As shown in the figure: m* < 0. Since m™ is a solution of
the self-consistency equation

exp(2B8[m* + h]) = (1 +m*)/(1 — m™), 19



it follows that m* + h < 0. Therefore, for any € > 0,

E _[’7' +}
MmN
_eBN[fN(m*) fn(mZ )] 221+ 0(1)]x
3 ﬁN[fN(m) n@m*)]=BN[fn(m/)—fn(mI)]

m,m/EI_N
m—m*|<e, |m/—m* |<e

3. By Stirling’s formula, for any m € (-1,1),

aN(1 —m?)
)

In(m) — 1(m) = [1 4 o(1)] 1. 106 (

and hence

e BENIIN(M)=1 ()] = [1 4+ o(1)] \/ N (12‘ m?)
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Consequently,
e BN[fn(m*)—fn(mZ)]

= [1 + o(1)] e ANLF(m*)—=F(mZ)] J 1-m

1 _m*Q'

*2

Inserting this expansion into the earlier expression, we get

Em]} [Tm;'\}]
* * — *2
— AN (m)—f(m2)]__2 J : m*2 [1+ o(1)]x
1—m*\1-—mT
Z o BN[f(m)—f(m*)]-BN[f(m')—f(m*)]
m,m’EI_N

m—m*|<e, |m/—m* |<e
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4. To evaluate the sum we write the Taylor expansions
f(m) — f(m*) = 5(m —m*)? f"(m*) + O((m — m*)*),
f(m') — f(m%) = 5(m' —mE)?f"(m%) + O((m' — m*)3),
where we use that f/(m*) = 0 and f'(m*) = 0. Changing

to new variables u = vVN(m — m*) and v/ = vVN(m/ — m*),
we see that the sum equals

[1+ o(1)] g /R du /R du’ exp [38" (m*)u? — 181" (m* )u'?)].

Since f”’"(m*) < 0 and f”(m*_|_) > 0, the integral converges
and equals
2T

B\ [=F"(m*)] f"(m* )

Combining, we end up with the desired formula in Theorem
4.1, but with an extra N in the prefactor. O
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The result in THEOREM 4.1 fits the classical Arrhenius law with
activation energy B[f(m*) — f(m*)] and with amplitude given by
the prefactor.

The activation energy coincides with what was found by
Kramers for Brownian motion in a double-well potential,
alluded to in Lecture 1.

The prefactor is off by a factor NV, which is due to the fact
that time is discrete and only one spin is flipped per time
step. In the continuous-time version, we speed up time by
a factor N, after which the match is perfect.
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As a corollary we get the exponential law of the metastable
crossover time.

THEOREM 4.2 Bovier, Eckhoff, Gayrard, Klein 2001
AS N — o0,

Tm_|_
lim P _ N __st|l=et Vit > 0.
N—oo My | E _[ +]

mN mN

LOSS OF MEMORY!

24



PAPER:

A. Bovier, M. Eckhoff, V. Gayrard, M. Klein,
Metastability in stochastic dynamics of disordered mean-field models,
Probab. Theory Relat. Fields 119 (2001) 99-161.

A. Bovier, M. Eckhoff, V. Gayrard, M. Klein,
Metastability and low lying spectra in reversible Markov chains,
Commun. Math. Phys. 228 (2002) 219—-255.

LITERATURE:

Chapter 13 of Bovier and den Hollander 2015, and references therein.

25



