

Rasmussen invariants

Lukas Lewark \& Claudius Zibrowius
Universität Regensburg, Fakultät für Mathematik
lukas@lewark.de, claudius.zibrowius@posteo.net
June 25, 2021. In 2004, Rasmussen used Khovanov homology to define a knot invariant s, which was found to have surprisingly strong geometric applications [6]. Namely, $s / 2$ is a homomorphism from the smooth concordance group to \mathbb{Z} and it is a lower bound for the slice genus. In fact, s determines the slice genus for torus knots $T_{p, q}$, which was previously only accessible via gauge theory.

In 2005, Mackaay, Turner, and Vaz generalized Rasmussen's construction, which used rational coefficients, and found analogous invariants $s^{\mathbb{F}}$ for any choice of ground field $\mathbb{F}[5]$. Seed showed that $s^{\mathbb{Q}}$ and $s^{\mathbb{F}_{2}}$ differ-a specific example is given by the knot $J=14 n 19265[4,8]$. But what about other fields? When p is an odd prime, is it possible that the $s^{\mathbb{F}_{p}}$ agree with the original invariant $s=s^{\mathbb{Q}}$?

The knot K on the front of the card is the 8 -twisted positive Whitehead double of $T_{3,4}$, denoted $D_{+}\left(T_{3,4}, 8\right)$; two independent programs confirm that $s^{\mathbb{Q}}(K) \neq s^{\mathbb{F}_{3}}(K)[3,7]$. Intriguingly, Whitehead doubles, such as $D_{+}\left(T_{2,3}, 2\right)$, were also the first known examples for which $s^{\mathbb{Q}}$ differs from the Ozsváth-Szabó concordance invariant from knot Floer homology, which is gauge-theoretic in nature [1]. By comparing the Rasmussen invariants for K and J, we see:
Theorem. The Rasmussen invariants $s^{\mathbb{Q}}, s^{\mathbb{F}_{2}}$, and $s^{\mathbb{F}_{3}}$ are linearly independent as homomorphisms from the smooth concordance group.
The right-hand side of the card indicates how the Rasmussen invariants are computed, using the multicurve techniques of [2], from a decomposition of K into the tangles T_{1} and T_{2}. The non-compact component of the invariant $\widetilde{\mathrm{BN}}\left(T_{2}\right)$ has a different slope over \mathbb{F}_{3} than
over \mathbb{F}_{p} for primes $p \neq 3$. (These invariants were computed with [9] using \mathbb{F}_{p} for large p as an approximation for \mathbb{Q}.) The Rasmussen invariants can be read off from the quantum gradings of the highlighted intersection points of the blue curves with the red curve, which is the invariant $\widetilde{\mathrm{BN}}\left(T_{1}\right)$. This approach may be used to construct an interesting infinite family of knots for which $s^{\mathbb{Q}} \neq s^{\mathbb{F}_{3}}$; this is the subject of a forthcoming article.
[1] Hedden \& Ording. The Ozsváth-Szabó and Rasmussen concordance invariants are not equal. Am. J. Math., 2008.
[2] Kotelskiy, Watson \& Zibrowius. Immersed curves in Khovanov homology. Preprint.
[3] Lewark. khoca. https://github.com/LLewark/khoca
[4] Lipshitz \& Sarkar. A refinement of Rasmussen's s-invariant. Duke Math. J., 2014.
[5] Mackaay, Turner \& Vaz. A remark on Rasmussen's invariant of knots. J. Knot Theory Ramifications, 2007; erratum ibid. 2013.
6] Rasmussen. Khovanov homology and the slice genus. Invent. Math., 2010.
[7] Schütz. KnotJob. https://www.maths.dur.ac.uk/~dma0ds/knotjob.html
[8] Seed. Knotkit. https://github.com/cseed/knotkit
[9] Zibrowius. kht++. https://cbz20.raspberryip.com/code/khtpp/docs/

