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PROF. DRAGOS GHIOCA

Problem 1. Let S be the set of real numbers which is closed under multiplication,
i.e., if a, b ∈ S then ab ∈ S. Let T and U be disjoint subsets of S whose union
is S. Given that the product of 3 elements of T (not necessarily distinct) is also
contained in T , and similarly, the product of 3 elements of U is also contained in
U , the prove that at least one of the two sets T or U is closed under multiplication.

Solution. Suppose there exist t1, t2 ∈ T with t1t2 ∈ U and also, there exist
u1, u2 ∈ U such that u1u2 ∈ T . Then

t1t2u1u2 = t1 · t2 · (u1u2) ∈ T
but also

t1t2u1u2 = u1 · u2 · (t1t2) ∈ U,
contradiction. So, at least one of the two subsets T or U must be closed under
multiplication.

Problem 2. Let x1(t), . . . , xn(t) be differentiable functions satisfying the following
system of differential equations:

x′i(t) =

n∑
j=1

ai,jxj(t),

for given positive real numbers ai,j . If

lim
t→∞

xi(t) = 0 for each i = 1, . . . , n,

then prove that the functions x1(t), . . . , xn(t) are linearly dependent, i.e., there
exist constants c1, . . . , cn (not all equal to 0) such that

n∑
i=1

cixi(t) = 0.

Solution. The vector solutions ~x(t) of a linear system of differential equations
is of the form

∑n
i=1 bifi(t) · ~vi, where the vectors ~vi are linearly independent, the

bi’s are constants and the fi(t) are functions. Furthermore, if λi is an eigenvalue
for the corresponding matrix A = (ai,j)1≤i,j≤n, then we may take fi(t) = eRe(λi)·t

(where Re(z) is always the real part of the complex number z).
Now, since each ai,j is a positive real number, then the trace of A is strictly

positive and therefore, there is at least one eigenvalue λi whose real part is strictly
positive. Then there exists a function fi(t) which does not converge to 0 as t→∞.
But then, let ~w be a nonzero vector orthogonal to all vectors ~vj for j 6= i. We have
that

~w · ~x(t) = bifi(t)(~w · ~vi) +
∑
j 6=i

bjfj(t)(~w · ~vj) = bifi(t) · d0,
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where d0 := ~w · ~vi 6= 0. On the other hand, since each xi(t)→ 0 as t→∞, then also
~w ·~x(t)→ 0 as t→∞ and thus, according to the above computation, coupled with
the fact that fi(t) does not converge to 0 as t→∞ (it actually diverges to +∞ in
this case), then we must have that bi = 0. But then we conclude that ~w · ~x(t) = 0,
i.e., x1(t), · · · , xn(t) are linearly dependent, as claimed.

Problem 3. Let p be a prime number greater than 3 and let k =
[
2p
3

]
, where [z]

denotes (as always) the integer part of the real number z (i.e., the largest integer

less than or equal to z). Prove that p2 divides
∑k
i=1

(
p
i

)
.

Solution. We have that for each 1 ≤ i ≤ k that(
p

i

)
= p · (p− 1) · · · (p− i+ 1)

i!

and since p is a prime number not dividing i! and furthermore,
(
p
i

)
is an integer,

then we must have that

(p− 1) · · · (p− i+ 1)

i!
is an integer.

Now, clearly, (p−1) · · · (p− i+1) = p`i+(−1)i−1(i−1)! for some integer `i because

(p− 1) · · · (p− i+ 1) ≡ (−1) · · · (−i+ 1) ≡ (−1)i−1 · (i− 1)! (mod p).

Therefore, there exists some integer bi such that letting ai be an integer with the
property that ai · i ≡ 1 (mod p), we have that

(p− 1) · · · (p− i+ 1)

i!
= pbi + (−1)i−1 · ai.

So, we are left to prove that p must divide
∑k
i=1(−1)i−1ai. We split our analysis

into two cases:
Case 1. p = 6c+ 1 for an integer c, in which case, k = 4c. Then

4c∑
i=1

(−1)i−1ai =

4c∑
i=1

ai −
2c∑
i=1

2a2i

and since a2i · (2i) ≡ 1 (mod p), while ai · i ≡ 1 (mod p), we must have that
2a2i − ai ≡ 0 (mod p) for each 1 ≤ i ≤ 2c and so,

4c∑
i=1

(−1)i−1ai ≡
4c∑

i=2c+1

ai (mod p).

However, for each 3c+ 1 ≤ i ≤ 4c, we have that ai ≡ −a6c+1−i (mod p) (note that
p = 6c+ 1). So,

4c∑
i=1

(−1)i−1ai ≡
3c∑

i=2c+1

ai −
3c∑

i=2c+1

ai ≡ 0 (mod p),

as desired.
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Case 2. p = 6c− 1 and so, k = 4c− 1. Then (arguing as before)

4c−1∑
i=1

(−1)i−1ai

≡
4c−1∑
i=1

ai −
2c−1∑
i=1

2a2i (mod p)

≡
4c−1∑
i=1

ai −
2c−1∑
i=1

ai (mod p)

≡
4c−1∑
i=2c

ai (mod p)

≡
3c−1∑
i=2c

ai +

4c−1∑
i=3c

ai (mod p)

≡
3c−1∑
i=2c

ai −
4c−1∑
i=3c

a6c−1−i (mod p)

≡
3c−1∑
i=2c

ai −
3c−1∑
j=2c

aj (mod p)

≡ 0 (mod p),

as desired.

Problem 4. Let c be a positive real number. Find all continuous functions
f : R −→ R with the property that for each real number x, we have that f(x) =
f(x2 + c).

Solution. First we note that f(−x) = f(x2 + c) = f(x) and so, f must be an
even function; so, it suffices to describe f(x) for x ∈ [0,+∞) and then simply define
f(−x) = f(x) for x > 0.

Now, there are two cases:
Case 1. 0 < c ≤ 1

4 .

In this case, there are real roots for the equation x2 + c−x = 0; we denote them
(in increasing order) by r1 and r2 and we note that it could be that r1 = r2 (if
c = 1

4 ). Also, we note that r1 > 0 because c > 0 (and so, also r2 > 0). We split
our analysis on each of the three intervals (0, r1), (r1, r2) and (r2,+∞) (with the
observation that the middle interval would not exist if c = 1

4 ).
Case 1a. For x ∈ (0, r1) we consider the sequence {xn} defined by x0 = x and

then recursively as xn+1 = x2n + c. Since x0 < r1, we have that

x1 = x20 + c > x0

but also

x1 = x20 + c < r21 + c = r1.

So, 0 < x0 < x1 < r1 and a simple inductive argument yields that the sequence
{xn} is strictly increasing, contained inside the interval (0, r1). So, its limit must
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be r1 because r21 + c = r1. Therefore, using the continuity of f(x), we get that on
the interval (0, r1), we have that

f(x) = f
(

lim
n→∞

xn

)
= f(r1),

i.e., f(x) is constant on (0, r1).
Case 1b. For x ∈ (r1, r2) (which automatically means that 0 < c < 1

4 ), again
considering the sequence {xn} defined recursively as above starting with x0 = x,
we observe that

x1 = x20 + c < x0

but also
x1 = x20 + c > r21 + c = r1

and so, inductively, we have that the sequence {xn} decreases inside the interval
(r1, r2) and its limit is r1. Therefore, arguing as before (using the continuity of
f(x)), we must have that f(x) is constant on (r1, r2).

Case 1c. For x ∈ (r2,+∞), the previously defined sequence {xn} diverges to
+∞, so it is no longer useful. However, we may define a new sequence {yn} starting
with y0 = x and then yn+1 =

√
yn − c. Then

y1 =
√
y0 − c >

√
r2 − c = r2

but more importantly,
y1 =

√
y0 − c < y0,

which means that an inductive argument yields that {yn} decreases and its limit is
r2. So, once again on the interval (r2,+∞), we obtain that f(x) must be constant
(due to its continuity).

Finally, putting together all our findings from Cases 1a, 1b, 1c (along with the
fact that f is an even function), we conclude that if 0 < c ≤ 1

4 , then f(x) must be
a constant function.

Case 2. c > 1
4 .

We consider now the sequence {zn} given by z0 = 0 and recursively zn+1 = z2n+c.
Clearly, zn+1 > zn for all n and moreover, the sequence diverges to +∞. Now, we
see that it suffices to choose any continuous function on the interval [0, c] = [z0, z1]
with the property that f(0) = f(c) and then define recursively f(x2 + c) = f(x)
which would allow us to define f(x) on intervals [z1, z2] and inductively we define
f(x) on each interval [zn, zn+1]. Then we also extend the definition of f(x) for
negative real numbers using the fact that f is an even function. So, in this case,
there are a continuum of desired functions f(x); they’re all uniquely determined by
a choice of a continuous function on [0, c] with the only restriction that f(0) = f(c).


