PUTNAM PRACTICE SET 9

PROF. DRAGOS GHIOCA

Problem 1. Let S be the set of real numbers which is closed under multiplication, i.e., if $a, b \in S$ then $a b \in S$. Let T and U be disjoint subsets of S whose union is S. Given that the product of 3 elements of T (not necessarily distinct) is also contained in T, and similarly, the product of 3 elements of U is also contained in U, the prove that at least one of the two sets T or U is closed under multiplication.

Solution. Suppose there exist $t_{1}, t_{2} \in T$ with $t_{1} t_{2} \in U$ and also, there exist $u_{1}, u_{2} \in U$ such that $u_{1} u_{2} \in T$. Then

$$
t_{1} t_{2} u_{1} u_{2}=t_{1} \cdot t_{2} \cdot\left(u_{1} u_{2}\right) \in T
$$

but also

$$
t_{1} t_{2} u_{1} u_{2}=u_{1} \cdot u_{2} \cdot\left(t_{1} t_{2}\right) \in U
$$

contradiction. So, at least one of the two subsets T or U must be closed under multiplication.

Problem 2. Let $x_{1}(t), \ldots, x_{n}(t)$ be differentiable functions satisfying the following system of differential equations:

$$
x_{i}^{\prime}(t)=\sum_{j=1}^{n} a_{i, j} x_{j}(t),
$$

for given positive real numbers $a_{i, j}$. If

$$
\lim _{t \rightarrow \infty} x_{i}(t)=0 \text { for each } i=1, \ldots, n,
$$

then prove that the functions $x_{1}(t), \ldots, x_{n}(t)$ are linearly dependent, i.e., there exist constants c_{1}, \ldots, c_{n} (not all equal to 0) such that

$$
\sum_{i=1}^{n} c_{i} x_{i}(t)=0
$$

Solution. The vector solutions $\vec{x}(t)$ of a linear system of differential equations is of the form $\sum_{i=1}^{n} b_{i} f_{i}(t) \cdot \overrightarrow{v_{i}}$, where the vectors $\overrightarrow{v_{i}}$ are linearly independent, the b_{i} 's are constants and the $f_{i}(t)$ are functions. Furthermore, if λ_{i} is an eigenvalue for the corresponding matrix $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$, then we may take $f_{i}(t)=e^{\operatorname{Re}\left(\lambda_{i}\right) \cdot t}$ (where $\operatorname{Re}(z)$ is always the real part of the complex number z).

Now, since each $a_{i, j}$ is a positive real number, then the trace of A is strictly positive and therefore, there is at least one eigenvalue λ_{i} whose real part is strictly positive. Then there exists a function $f_{i}(t)$ which does not converge to 0 as $t \rightarrow \infty$. But then, let \vec{w} be a nonzero vector orthogonal to all vectors $\overrightarrow{v_{j}}$ for $j \neq i$. We have that

$$
\vec{w} \cdot \vec{x}(t)=b_{i} f_{i}(t)\left(\vec{w} \cdot \overrightarrow{v_{i}}\right)+\sum_{j \neq i} b_{j} f_{j}(t)\left(\vec{w} \cdot \overrightarrow{v_{j}}\right)=b_{i} f_{i}(t) \cdot d_{0},
$$

where $d_{0}:=\vec{w} \cdot \overrightarrow{v_{i}} \neq 0$. On the other hand, since each $x_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$, then also $\vec{w} \cdot \vec{x}(t) \rightarrow 0$ as $t \rightarrow \infty$ and thus, according to the above computation, coupled with the fact that $f_{i}(t)$ does not converge to 0 as $t \rightarrow \infty$ (it actually diverges to $+\infty$ in this case), then we must have that $b_{i}=0$. But then we conclude that $\vec{w} \cdot \vec{x}(t)=0$, i.e., $x_{1}(t), \cdots, x_{n}(t)$ are linearly dependent, as claimed.

Problem 3. Let p be a prime number greater than 3 and let $k=\left[\frac{2 p}{3}\right]$, where $[z]$ denotes (as always) the integer part of the real number z (i.e., the largest integer less than or equal to z). Prove that p^{2} divides $\sum_{i=1}^{k}\binom{p}{i}$.

Solution. We have that for each $1 \leq i \leq k$ that

$$
\binom{p}{i}=p \cdot \frac{(p-1) \cdots(p-i+1)}{i!}
$$

and since p is a prime number not dividing $i!$ and furthermore, $\binom{p}{i}$ is an integer, then we must have that

$$
\frac{(p-1) \cdots(p-i+1)}{i!} \text { is an integer. }
$$

Now, clearly, $(p-1) \cdots(p-i+1)=p \ell_{i}+(-1)^{i-1}(i-1)$! for some integer ℓ_{i} because

$$
(p-1) \cdots(p-i+1) \equiv(-1) \cdots(-i+1) \equiv(-1)^{i-1} \cdot(i-1)!\quad(\bmod p)
$$

Therefore, there exists some integer b_{i} such that letting a_{i} be an integer with the property that $a_{i} \cdot i \equiv 1(\bmod p)$, we have that

$$
\frac{(p-1) \cdots(p-i+1)}{i!}=p b_{i}+(-1)^{i-1} \cdot a_{i}
$$

So, we are left to prove that p must divide $\sum_{i=1}^{k}(-1)^{i-1} a_{i}$. We split our analysis into two cases:

Case 1. $p=6 c+1$ for an integer c, in which case, $k=4 c$. Then

$$
\sum_{i=1}^{4 c}(-1)^{i-1} a_{i}=\sum_{i=1}^{4 c} a_{i}-\sum_{i=1}^{2 c} 2 a_{2 i}
$$

and since $a_{2 i} \cdot(2 i) \equiv 1(\bmod p)$, while $a_{i} \cdot i \equiv 1(\bmod p)$, we must have that $2 a_{2 i}-a_{i} \equiv 0(\bmod p)$ for each $1 \leq i \leq 2 c$ and so,

$$
\sum_{i=1}^{4 c}(-1)^{i-1} a_{i} \equiv \sum_{i=2 c+1}^{4 c} a_{i} \quad(\bmod p)
$$

However, for each $3 c+1 \leq i \leq 4 c$, we have that $a_{i} \equiv-a_{6 c+1-i}(\bmod p)$ (note that $p=6 c+1)$. So,

$$
\sum_{i=1}^{4 c}(-1)^{i-1} a_{i} \equiv \sum_{i=2 c+1}^{3 c} a_{i}-\sum_{i=2 c+1}^{3 c} a_{i} \equiv 0 \quad(\bmod p)
$$

as desired.

Case 2. $p=6 c-1$ and so, $k=4 c-1$. Then (arguing as before)

$$
\begin{aligned}
\sum_{i=1}^{4 c-1}(-1)^{i-1} a_{i} & \\
& \equiv \sum_{i=1}^{4 c-1} a_{i}-\sum_{i=1}^{2 c-1} 2 a_{2 i} \quad(\bmod p) \\
& \equiv \sum_{i=1}^{4 c-1} a_{i}-\sum_{i=1}^{2 c-1} a_{i} \quad(\bmod p) \\
& \equiv \sum_{i=2 c}^{4 c-1} a_{i}(\bmod p) \\
& \equiv \sum_{i=2 c}^{3 c-1} a_{i}+\sum_{i=3 c}^{4 c-1} a_{i} \quad(\bmod p) \\
& \equiv \sum_{i=2 c}^{3 c-1} a_{i}-\sum_{i=3 c}^{4 c-1} a_{6 c-1-i} \quad(\bmod p) \\
& \equiv \sum_{i=2 c}^{3 c-1} a_{i}-\sum_{j=2 c}^{3 c-1} a_{j} \quad(\bmod p) \\
& \equiv 0(\bmod p)
\end{aligned}
$$

as desired.

Problem 4. Let c be a positive real number. Find all continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ with the property that for each real number x, we have that $f(x)=$ $f\left(x^{2}+c\right)$.

Solution. First we note that $f(-x)=f\left(x^{2}+c\right)=f(x)$ and so, f must be an even function; so, it suffices to describe $f(x)$ for $x \in[0,+\infty)$ and then simply define $f(-x)=f(x)$ for $x>0$.

Now, there are two cases:
Case 1. $0<c \leq \frac{1}{4}$.
In this case, there are real roots for the equation $x^{2}+c-x=0$; we denote them (in increasing order) by r_{1} and r_{2} and we note that it could be that $r_{1}=r_{2}$ (if $c=\frac{1}{4}$). Also, we note that $r_{1}>0$ because $c>0$ (and so, also $r_{2}>0$). We split our analysis on each of the three intervals $\left(0, r_{1}\right),\left(r_{1}, r_{2}\right)$ and $\left(r_{2},+\infty\right)$ (with the observation that the middle interval would not exist if $c=\frac{1}{4}$).

Case 1a. For $x \in\left(0, r_{1}\right)$ we consider the sequence $\left\{x_{n}\right\}$ defined by $x_{0}=x$ and then recursively as $x_{n+1}=x_{n}^{2}+c$. Since $x_{0}<r_{1}$, we have that

$$
x_{1}=x_{0}^{2}+c>x_{0}
$$

but also

$$
x_{1}=x_{0}^{2}+c<r_{1}^{2}+c=r_{1} .
$$

So, $0<x_{0}<x_{1}<r_{1}$ and a simple inductive argument yields that the sequence $\left\{x_{n}\right\}$ is strictly increasing, contained inside the interval ($0, r_{1}$). So, its limit must
be r_{1} because $r_{1}^{2}+c=r_{1}$. Therefore, using the continuity of $f(x)$, we get that on the interval $\left(0, r_{1}\right)$, we have that

$$
f(x)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=f\left(r_{1}\right),
$$

i.e., $f(x)$ is constant on $\left(0, r_{1}\right)$.

Case 1b. For $x \in\left(r_{1}, r_{2}\right)$ (which automatically means that $0<c<\frac{1}{4}$), again considering the sequence $\left\{x_{n}\right\}$ defined recursively as above starting with $x_{0}=x$, we observe that

$$
x_{1}=x_{0}^{2}+c<x_{0}
$$

but also

$$
x_{1}=x_{0}^{2}+c>r_{1}^{2}+c=r_{1}
$$

and so, inductively, we have that the sequence $\left\{x_{n}\right\}$ decreases inside the interval $\left(r_{1}, r_{2}\right)$ and its limit is r_{1}. Therefore, arguing as before (using the continuity of $f(x)$), we must have that $f(x)$ is constant on $\left(r_{1}, r_{2}\right)$.

Case 1c. For $x \in\left(r_{2},+\infty\right)$, the previously defined sequence $\left\{x_{n}\right\}$ diverges to $+\infty$, so it is no longer useful. However, we may define a new sequence $\left\{y_{n}\right\}$ starting with $y_{0}=x$ and then $y_{n+1}=\sqrt{y_{n}-c}$. Then

$$
y_{1}=\sqrt{y_{0}-c}>\sqrt{r_{2}-c}=r_{2}
$$

but more importantly,

$$
y_{1}=\sqrt{y_{0}-c}<y_{0},
$$

which means that an inductive argument yields that $\left\{y_{n}\right\}$ decreases and its limit is r_{2}. So, once again on the interval $\left(r_{2},+\infty\right)$, we obtain that $f(x)$ must be constant (due to its continuity).

Finally, putting together all our findings from Cases 1a, 1b, 1c (along with the fact that f is an even function), we conclude that if $0<c \leq \frac{1}{4}$, then $f(x)$ must be a constant function.

Case 2. $c>\frac{1}{4}$.
We consider now the sequence $\left\{z_{n}\right\}$ given by $z_{0}=0$ and recursively $z_{n+1}=z_{n}^{2}+c$. Clearly, $z_{n+1}>z_{n}$ for all n and moreover, the sequence diverges to $+\infty$. Now, we see that it suffices to choose any continuous function on the interval $[0, c]=\left[z_{0}, z_{1}\right]$ with the property that $f(0)=f(c)$ and then define recursively $f\left(x^{2}+c\right)=f(x)$ which would allow us to define $f(x)$ on intervals $\left[z_{1}, z_{2}\right]$ and inductively we define $f(x)$ on each interval $\left[z_{n}, z_{n+1}\right]$. Then we also extend the definition of $f(x)$ for negative real numbers using the fact that f is an even function. So, in this case, there are a continuum of desired functions $f(x)$; they're all uniquely determined by a choice of a continuous function on $[0, c]$ with the only restriction that $f(0)=f(c)$.

