PUTNAM PRACTICE SET 8

PROF. DRAGOS GHIOCA

Problem 1. Prove that if $a, b, c \in \mathbb{C}$ and the following relations are satisfied:

- $a+b+c=0$; and
- $|a|=|b|=|c|$,
then $a^{3}=b^{3}=c^{3}$.
Can this result be extended to more than 3 complex numbers?
Solution. Clearly, if $a=0$, then $b=c=0$. So, from now on, we assume neither number is 0 and then dividing by a, we may assume we deal with the complex numbers $1, r, s$ with $r=e^{i \alpha}$ and $s=e^{i \beta}$ for some real numbers α, β such that $1+r+s=0$, which means

$$
\sin (\alpha)+\sin (\beta)=0 \text { and so, } \sin (\beta)=-\sin (\alpha),
$$

which in particular, yields $\cos (\beta)= \pm \cos (\alpha)$. Also, we need to have $1+\cos (\alpha)+$ $\cos (\beta)=0$ and so, this means we cannot have $\cos (\beta)=-\cos (\alpha)$ and instead, $\cos (\beta)=\cos (\alpha)=\frac{-1}{2}$. In conclusion, r and s are the two primitive third roots of unity, which yields that $a^{3}=b^{3}=c^{3}$ as desired.

Now, if we deal with more than 3 complex numbers, it will not be enough to assume that $a_{1}+\cdots+a_{n}=0$ and $\left|a_{1}\right|=\left|a_{2}\right|=\cdots=\left|a_{n}\right|$ in order to conclude that $a_{1}^{n}=a_{2}^{n}=\cdots=a_{n}^{n}$. Indeed, we can let

$$
a_{k}=e^{2 \pi i k /(n-2)} \text { for } k=1, \ldots, n-2
$$

and $a_{n}=-a_{n-1}$ for some complex number a_{n-1} which is not a root of unity.

Problem 2. If the series $\sum_{n=1}^{\infty} a_{n}$ of real numbers converges, does $\sum_{n=1}^{\infty} a_{n}^{3}$ converge?

Solution. No; here's a counterexample. For each positive integer n, we let $a_{2^{n}}=\frac{1}{\sqrt[3]{n}}$. Now, for each $n \geq 1$ and for each $1 \leq k<2^{n}$, we let $a_{2^{n}+k}=-\frac{1}{\sqrt[3]{n} \cdot 2^{n}}$. For completion, we let $a_{1}=0$.

Claim 1. The series $\sum_{k=1}^{\infty} a_{k}$ converges.
Proof of Claim 1. For each $1<\ell<m$, we let n_{1} be the unique positive integer such that $2^{n_{1}} \leq \ell<2^{n_{1}+1}$ and also, we let n_{2} be the unique positive integer such that $2^{n_{2}} \leq m<2^{n_{2}+1}$; then we let $k_{1}:=\ell-2^{n_{1}}$ and $k_{2}:=m-2^{n_{2}}$. Clearly, $1 \leq n_{1} \leq n_{2}$. We have

$$
\left|\sum_{k=\ell}^{m} a_{k}\right|<\frac{1}{\sqrt[3]{n_{1}}}+\frac{1}{\sqrt[3]{n_{2}}}+\sum_{i=n_{1}+1}^{n_{2}-1} \frac{1}{2^{i} \cdot \sqrt[3]{i}}
$$

and so, if $n_{1}, n_{2}>N$, then

$$
\left|\sum_{k=\ell}^{m} a_{k}\right|<\frac{2}{\sqrt[3]{N}}+\frac{1}{2^{N}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

So, indeed, $\sum_{k=1}^{\infty} a_{k}$ converges.
Claim 2. The series $\sum_{k=1}^{\infty} a_{k}^{3}$ diverges.
Indeed, for each $n \geq 1$ and for each $0 \leq k \leq 2^{n}-1$, we have

$$
\begin{aligned}
& \sum_{k=1}^{2^{n}} a_{k}^{3} \\
& \quad>\sum_{i=1}^{n} \frac{1}{i}-\sum_{i=1}^{n} \frac{2^{i}}{i \cdot 8^{i}} \\
& \quad>\sum_{i=1}^{n} \frac{1}{2 i}
\end{aligned}
$$

which diverges to ∞, thus proving that $\sum_{k=1}^{\infty} a_{k}$ diverges.

Problem 3. For what pairs (a, b) of positive real numbers we have that the integral

$$
\int_{b}^{\infty}(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}) \mathrm{dx}
$$

converges.
Solution. The key observation is that

$$
\sqrt{x+a}-\sqrt{x}=\frac{a}{\sqrt{x+a}+\sqrt{x}}=\frac{a}{2 \sqrt{x}}-\frac{a^{2}}{2 \sqrt{x} \cdot(\sqrt{x}+\sqrt{x+a})^{2}} ;
$$

in other words,

$$
\left|\sqrt{x+a}-\sqrt{x}-\frac{a}{2 \sqrt{x}}\right|<\frac{a^{2}}{2 x^{\frac{3}{2}}} .
$$

So, $\sqrt{\sqrt{x+a}-\sqrt{x}}=\sqrt{\frac{a}{2}} \cdot \frac{1}{\sqrt[4]{x}}+f_{a}(x)$, where $\left|f_{a}(x)\right|<C_{a} x^{-5 / 4}$ for some positive constant C_{a} depending only on a (and independent of x). A similar computation yields that

$$
\sqrt{\sqrt{x}-\sqrt{x-b}}=\sqrt{\frac{b}{2}} \cdot \frac{1}{\sqrt[4]{x}}+f_{b}(x)
$$

where $\left|f_{b}(x)\right|<C_{b} x^{-5 / 4}$ for some positive constant C_{b} depending only on b (and independent of x). This means that

$$
\int_{b}^{\infty}\left|f_{a}(x)-f_{b}(x)\right| \mathrm{dx}<\int_{b}^{\infty}\left|f_{a}(x)\right| \mathrm{dx}+\int_{b}^{\infty}\left|f_{b}(x)\right| \mathrm{dx}<\infty
$$

So, we conclude that $\int_{b}^{\infty}(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}) \mathrm{dx}$ converges if and only if $\int_{b}^{\infty} \frac{\sqrt{a}-\sqrt{b}}{\sqrt{2} \cdot \sqrt[4]{x}} \mathrm{dx}$ converges, which happens if and only if $a=b$.

Problem 4. For each $n \in \mathbb{N}$, we let S_{n} be the set of all pairs $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ with the property that $x^{3}-3 x y^{2}+y^{3}=n$.
(a) For each $n \in \mathbb{N}$, prove that either S_{n} is the empty set, or it has at least 3 elements.
(b) Prove that S_{2021} is the empty set.

Solution.
(a) We observe that once (x, y) is a solution, then also $(-y, x-y)$ is a solution and therefore, also $(y-x,-x)$ is a solution; finally, applying the transformation $(x, y) \mapsto(-y, x-y)$ to the last solution $(y-x,-x)$, we recover the original solution (x, y). We note that for a solution (x, y), the other two solutions $(y-x,-x)$ and $(-y, x-y)$ are distinct because otherwise we would have $y=-x$ and $x=y-x=-x-x$, i.e., $x=0$ and so, $y=0$, contradicting the fact that $x^{3}-3 x y^{2}+y^{3}=n$ cannot have the trivial solution. So, indeed, once there exists a solution, then there are at least 3 solutions.

The idea for this solution comes from looking at transformations of the form $(x, y) \mapsto(a x+b y, c x+d y)$ which preserve the quantity $x^{3}-3 x y^{2}+y^{3}$; also, we search for small values for a, b, c, d.
(b) Using Fermat's Little Theorem, we have $x^{3} \equiv x(\bmod 3)$ and so,

$$
2 \equiv 2021 \equiv x^{3}-3 x y^{2}+y^{3} \equiv x+y \quad(\bmod 3)
$$

and so, noting part (a) above, we may assume x is divisible by 3 and therefore, $y \equiv 2(\bmod 3)$. But then $y^{3} \equiv 8(\bmod 9)$ and overall (because 3 divides x),

$$
x^{3}-3 x y^{2}+y^{3} \equiv 8 \not \equiv 2021 \quad(\bmod 9)
$$

contradiction. Therefore, there are no solutions to $x^{3}-3 x y^{2}+y^{3}=2021$.

