PUTNAM PRACTICE SET 6

PROF. DRAGOS GHIOCA

Problem 1. Let a and s be real numbers satisfying the following properties:

- 0 < a < 1; and
- s > 0, but $s \neq 1$.

Prove that $\frac{1-s^a}{1-s} \le (1+s)^{a-1}$.

Solution. We observe that replacing s by 1/s yields the same inequality since

$$\frac{1 - \frac{1}{s^a}}{1 - \frac{1}{s}} = \frac{1}{s^{a-1}} \cdot \frac{1 - s^a}{1 - s}$$

and $(1+1/s)^{a-1} = \frac{1}{s^{a-1}} \cdot (1+s)^{a-1}$. So, from now on, we assume 0 < s < 1. Also, we may assume 0 < a < 1 because the case a = 1 is clear. We let

$$f_a(s) := -(1 - s^a) + (1 - s) \cdot (1 + s)^{a-1}$$
 for $0 < s < 1$.

We observe that $f_a(0) = 0 = f_a(1)$ and so, in order to prove that $f_a(s) > 0$ for 0 < s < 1, it suffices to prove that there exists a unique $d \in (0,1)$ such that f_a is increasing on (0,d) and then f_a is decreasing on (d,1); this will guarantee that $f_a(s) > 0$ for all 0 < s < 1.

So, we compute

$$\begin{aligned} f_a(s)' \\ &= as^{a-1} - (1+s)^{a-1} + (1-s) \cdot (a-1) \cdot (1+s)^{a-2} \\ &= s^{a-1} \cdot \left(a - (1+1/s)^{a-1} - (1-1/s) \cdot (a-1) \cdot (1+1/s)^{a-2}\right) \\ &= s^{a-1} \cdot g_a(1/s), \end{aligned}$$

where $g_a(x) := a - (1+x)^{a-1} - (1-x) \cdot (a-1) \cdot (1+x)^{a-2}$, which is defined for x > 1 (note that x corresponds to 1/s, where 0 < s < 1). Once again we differentiate:

$$g_a'(x)$$

$$= -(a-1) \cdot (1+x)^{a-2} + (a-1) \cdot (1+x)^{a-2} - (1-x) \cdot (a-1) \cdot (a-2)(1+x)^{a-3}$$
$$= -(a-1)(a-2) \cdot (1-x) \cdot (1+x)^{a-3} > 0$$

since 0 < a < 1 and x > 1. On the other hand, $g_a(1) = a - 2^{a-1}$ and we view it as a function of a, i.e.,

$$h(a) := a - 2^{a-1}$$
 for $0 < a < 1$.

We have

$$h'(a) = 1 - \ln(2) \cdot 2^{a-1}$$

which is decreasing and its smallest value is obtained for a = 1 and then

$$h'(a) > h'(1) = 1 - \ln(2) > 0$$
 for $0 < a < 1$.

So, h(x) is increasing and h(a) < h(1) = 0 for all 0 < a < 1. In conclusion, $g_a(1) < 0$ and because g_a is increasing, in order to determine the sign of $g_a(x)$, we need to compute

$$\lim_{x \to \infty} g_a(x) = a > 0$$

because 0 < a < 1. In conclusion, there exists some $c \in (1, \infty)$ such that $g_a(x) < 0$ for all $x \in (1, c)$ and $g_a(x) > 0$ for all $x \in (c, \infty)$. Hence, letting $d := 1/c \in (0, 1)$, we obtain that $f'_a(s) > 0$ for all $s \in (0, d)$ and $f'_a(s) < 0$ for all $s \in (d, 1)$. This concludes our proof that $f_a(s) > 0$ for all 0 < s < 1 (since $f_a(s)$ increases on (0, d)starting from f(0) = 0 and then it decreases on (d, 1) ending at $f_a(1) = 0$).

Problem 2. Let S be the set of all real numbers of the form $\frac{m+n}{\sqrt{m^2+n^2}}$ where m and n are positive integers. Prove that for each two distinct elements u < v contained in S, there exists another element $w \in S$ such that u < w < v.

Solution. We observe that letting $r := \frac{m}{n}$ (where $m \leq n$), then

$$\frac{m+n}{\sqrt{m^2+n^2}} = \frac{1+r}{\sqrt{1+r^2}}.$$

So, we let $f(r) := \frac{1+r}{\sqrt{1+r^2}}$ for all rational numbers $0 < r \le 1$. Now, we observe that the above function f is increasing since

$$f'(x) = \frac{1 \cdot \sqrt{1 + x^2} - (1 + x) \cdot \frac{2x}{2\sqrt{1 + x^2}}}{1 + x^2} = \frac{1 - x}{(1 + x^2)^{\frac{3}{2}}} > 0$$

if 0 < x < 1. So, for any distinct elements u < v in S, there exist $0 < r_1 < r_2 \le 1$ such that $u = f(r_1)$ and $v = f(r_2)$. Hence, $w := f\left(\frac{r_1+r_2}{2}\right) \in S$ and u < w < v.

Problem 3. We consider a set S of finitely many disks in the cartesian plane (of arbitrary centers and arbitrary radii) and we let A be the area of the region represented by their union. Prove that there exists a subset $S_0 \subseteq S$ satisfying the following two properties:

- any two disks from S_0 are disjoint.
- the sum of the areas of the disks from S_0 is at least $\frac{A}{q}$.

Solution. We order the radii of the given disks D_1, \ldots, D_n in decreasing order $r_1 \ge r_2 \ge \cdots \ge r_n$. Also, we let D'_i (for $i = 1, \ldots, n$) be the disks with the same centers O_i as the corresponding disk D_i but with its radii $r'_i := 3r_i$ for $i = 1, \ldots, n$. Now, we select the disks D_{i_j} for $j = 1, \ldots, m$ as follows: i_j is the smallest index k with the property that D_k is not contained in $\bigcup_{\ell < j} C'_{i_\ell}$. So, $i_1 := 1$ and clearly, $m \le n$ (i.e., the above process is destined to end in finitely many steps and at one moment there is no additional disk we can select in our process). Hence,

$$\bigcup_{i=1}^{n} D_{i} \subseteq \bigcup_{j=1}^{m} D'_{i_{j}}$$

and so, the area of $\bigcup_{j=1}^{m} D_{i_j}$ is $\frac{1}{9}$ times the area of $\bigcup_{j=1}^{m} D'_{i_j}$ and so, the area of $\bigcup_{i=1}^{m} D_{i_j}$ is at least $\frac{1}{9}$ times the area of $\bigcup_{i=1}^{n} D_i$.

On the other hand, we claim that there are no points in common for the disks D_{i_1}, \ldots, D_{i_m} . Indeed, if there is a point x in common for the disks D_{i_k} and D_{i_ℓ} for $k < \ell$, then we have that for each point y in the disk $D_{i_{\ell}}$,

ď

$$\begin{split} \operatorname{ist}(O_{i_k}, y) \\ &\leq \operatorname{dist}(O_{i_k}, x) + \operatorname{dist}(x, O_{i_\ell}) + \operatorname{dist}(O_{i_\ell}, y) \\ &\leq r_{i_k} + r_{i_\ell} + r_{i_\ell} \\ &\leq r_{i_k} + 2r_{i_\ell} \\ &\leq 3r_{i_k}, \end{split}$$

which yields that y is contained in D'_{i_k} . In other words, D_{i_ℓ} is contained in D'_{i_k} , where $k < \ell$; this contradicts our choice of i_{ℓ} which has the property that $D_{i_{\ell}}$ is not contained in $\bigcup_{j < \ell} D'_{i_j}$. In conclusion, the disks D_{i_j} (for $j = 1, \ldots, m$) are indeed disjoint and the sum of their areas is at least $\frac{1}{9}$ times the area of the union of all disks D_1, \ldots, D_n .

Problem 4. Let $\{u_n\}_{n\geq 1}$ be a recurrence sequence defined by $u_{n+1} = \frac{\sqrt[3]{64u_n+15}}{4}$ for each $n \ge 1$. Find $\lim_{n\to\infty} u_n$.

Solution. If there exists a limit L to the above sequence, then we must have

$$L = \frac{\sqrt[3]{64L + 15}}{4},$$

i.e., $64L^3 = 64L + 15$, which suggests that the sequence either converges to one of the roots of the above equation, or that the sequence diverges to $\pm\infty$. On the other hand, since the function $f(x) := \frac{\sqrt[3]{64x+15}}{4}$ is increasing, we get that the relation between u_1 and u_2 determines whether the sequence is either increasing, or decreasing for all n, i.e., if $u_1 < u_2$, then $u_n < u_{n+1}$ (for all n), and if $u_1 > u_2$ then $u_n > u_{n+1}$ (for all n). Now, the roots of the equation

$$64x^3 - 64x - 15 = 0$$

are $x_2 = -\frac{1}{4}$ and $x_1 = \frac{1-\sqrt{61}}{8}$ and $x_3 = \frac{1+\sqrt{61}}{8}$. So, we have several cases: **Case 1.** If $u_1 = x_i$ for some i = 1, 2, 3, then $x_n = u_i$ for all n and therefore, the limit is simply u_i in this case.

Case 2. If $u_1 < x_1$, then $u_2 = f(u_1) < f(x_1) = x_1$ but also $u_2 > u_1$, which means that the sequence $\{u_n\}$ converges to x_1 in this case.

Case 3. If $x_1 < u_1 < x_2$ then $x_1 < u_n < x_2$ for all n and moreover, $u_2 < u_1$ and so, $u_{n+1} < u_n$ for all n. Therefore, the sequence $\{u_n\}$ converges to x_1 in this case.

Case 4. If $x_2 < u_1 < x_3$ then $x_2 < u_n < x_3$ for all n and moreover, $u_1 < u_2$ and so, $u_n < u_{n+1}$ for all n. Therefore, the sequence $\{u_n\}$ converges to x_3 .

Case 5. If $x_3 < u_1$ then $x_3 < u_2 < u_1$ and so, $u_{n+1} < u_n$ for all n. In conclusion, $\{u_n\}$ converges to x_3 .