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PROF. DRAGOS GHIOCA

Problem 1. Let a and s be real numbers satisfying the following properties:

• 0 < a ≤ 1; and
• s > 0, but s 6= 1.

Prove that 1−sa
1−s ≤ (1 + s)a−1.

Solution. We observe that replacing s by 1/s yields the same inequality since

1− 1
sa

1− 1
s

=
1

sa−1
· 1− sa

1− s

and (1 + 1/s)a−1 = 1
sa−1 · (1 + s)a−1. So, from now on, we assume 0 < s < 1. Also,

we may assume 0 < a < 1 because the case a = 1 is clear. We let

fa(s) := −(1− sa) + (1− s) · (1 + s)a−1 for 0 < s < 1.

We observe that fa(0) = 0 = fa(1) and so, in order to prove that fa(s) > 0 for
0 < s < 1, it suffices to prove that there exists a unique d ∈ (0, 1) such that fa
is increasing on (0, d) and then fa is decreasing on (d, 1); this will guarantee that
fa(s) > 0 for all 0 < s < 1.

So, we compute

fa(s)′

= asa−1 − (1 + s)a−1 + (1− s) · (a− 1) · (1 + s)a−2

= sa−1 ·
(
a− (1 + 1/s)a−1 − (1− 1/s) · (a− 1) · (1 + 1/s)a−2

)
= sa−1 · ga(1/s),

where ga(x) := a−(1+x)a−1−(1−x) ·(a−1) ·(1+x)a−2, which is defined for x > 1
(note that x corresponds to 1/s, where 0 < s < 1). Once again we differentiate:

g′a(x)

= −(a− 1) · (1 + x)a−2 + (a− 1) · (1 + x)a−2 − (1− x) · (a− 1) · (a− 2)(1 + x)a−3

= −(a− 1)(a− 2) · (1− x) · (1 + x)a−3 > 0

since 0 < a < 1 and x > 1. On the other hand, ga(1) = a− 2a−1 and we view it as
a function of a, i.e.,

h(a) := a− 2a−1 for 0 < a < 1.

We have

h′(a) = 1− ln(2) · 2a−1,
which is decreasing and its smallest value is obtained for a = 1 and then

h′(a) > h′(1) = 1− ln(2) > 0 for 0 < a < 1.
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So, h(x) is increasing and h(a) < h(1) = 0 for all 0 < a < 1. In conclusion,
ga(1) < 0 and because ga is increasing, in order to determine the sign of ga(x), we
need to compute

lim
x→∞

ga(x) = a > 0

because 0 < a < 1. In conclusion, there exists some c ∈ (1,∞) such that ga(x) < 0
for all x ∈ (1, c) and ga(x) > 0 for all x ∈ (c,∞). Hence, letting d := 1/c ∈ (0, 1),
we obtain that f ′a(s) > 0 for all s ∈ (0, d) and f ′a(s) < 0 for all s ∈ (d, 1). This
concludes our proof that fa(s) > 0 for all 0 < s < 1 (since fa(s) increases on (0, d)
starting from f(0) = 0 and then it decreases on (d, 1) ending at fa(1) = 0).

Problem 2. Let S be the set of all real numbers of the form m+n√
m2+n2

where m and

n are positive integers. Prove that for each two distinct elements u < v contained
in S, there exists another element w ∈ S such that u < w < v.

Solution. We observe that letting r := m
n (where m ≤ n), then

m + n√
m2 + n2

=
1 + r√
1 + r2

.

So, we let f(r) := 1+r√
1+r2

for all rational numbers 0 < r ≤ 1. Now, we observe that

the above function f is increasing since

f ′(x) =
1 ·
√

1 + x2 − (1 + x) · 2x
2
√
1+x2

1 + x2
=

1− x

(1 + x2)
3
2

> 0

if 0 < x < 1. So, for any distinct elements u < v in S, there exist 0 < r1 < r2 ≤ 1
such that u = f(r1) and v = f(r2). Hence, w := f

(
r1+r2

2

)
∈ S and u < w < v.

Problem 3. We consider a set S of finitely many disks in the cartesian plane
(of arbitrary centers and arbitrary radii) and we let A be the area of the region
represented by their union. Prove that there exists a subset S0 ⊆ S satisfying the
following two properties:

• any two disks from S0 are disjoint.
• the sum of the areas of the disks from S0 is at least A

9 .

Solution. We order the radii of the given disks D1, . . . , Dn in decreasing order
r1 ≥ r2 ≥ · · · ≥ rn. Also, we let D′i (for i = 1, . . . , n) be the disks with the same
centers Oi as the corresponding disk Di but with its radii r′i := 3ri for i = 1, . . . , n.
Now, we select the disks Dij for j = 1, . . . ,m as follows: ij is the smallest index
k with the property that Dk is not contained in

⋃
`<j C

′
i`

. So, i1 := 1 and clearly,

m ≤ n (i.e., the above process is destined to end in finitely many steps and at one
moment there is no additional disk we can select in our process). Hence,

n⋃
i=1

Di ⊆
m⋃
j=1

D′ij

and so, the area of
⋃m

j=1 Dij is 1
9 times the area of

⋃m
j=1 D

′
ij

and so, the area of⋃m
i=1 Dij is at least 1

9 times the area of
⋃n

i=1 Di.
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On the other hand, we claim that there are no points in common for the disks
Di1 , . . . , Dim . Indeed, if there is a point x in common for the disks Dik and Di` for
k < `, then we have that for each point y in the disk Di` ,

dist(Oik , y)

≤ dist(Oik , x) + dist(x,Oi`) + dist(Oi` , y)

≤ rik + ri` + ri`
≤ rik + 2ri`
≤ 3rik ,

which yields that y is contained in D′ik . In other words, Di` is contained in D′ik ,
where k < `; this contradicts our choice of i` which has the property that Di` is not
contained in

⋃
j<` D

′
ij

. In conclusion, the disks Dij (for j = 1, . . . ,m) are indeed

disjoint and the sum of their areas is at least 1
9 times the area of the union of all

disks D1, . . . , Dn.

Problem 4. Let {un}n≥1 be a recurrence sequence defined by un+1 =
3
√
64un+15

4
for each n ≥ 1. Find limn→∞ un.

Solution. If there exists a limit L to the above sequence, then we must have

L =
3
√

64L + 15

4
,

i.e., 64L3 = 64L + 15, which suggests that the sequence either converges to one
of the roots of the above equation, or that the sequence diverges to ±∞. On

the other hand, since the function f(x) :=
3
√
64x+15

4 is increasing, we get that the
relation between u1 and u2 determines whether the sequence is either increasing,
or decreasing for all n, i.e., if u1 < u2, then un < un+1 (for all n), and if u1 > u2

then un > un+1 (for all n). Now, the roots of the equation

64x3 − 64x− 15 = 0

are x2 = − 1
4 and x1 = 1−

√
61

8 and x3 = 1+
√
61

8 . So, we have several cases:
Case 1. If u1 = xi for some i = 1, 2, 3, then xn = ui for all n and therefore, the

limit is simply ui in this case.
Case 2. If u1 < x1, then u2 = f(u1) < f(x1) = x1 but also u2 > u1, which

means that the sequence {un} converges to x1 in this case.
Case 3. If x1 < u1 < x2 then x1 < un < x2 for all n and moreover, u2 < u1

and so, un+1 < un for all n. Therefore, the sequence {un} converges to x1 in this
case.

Case 4. If x2 < u1 < x3 then x2 < un < x3 for all n and moreover, u1 < u2

and so, un < un+1 for all n. Therefore, the sequence {un} converges to x3.
Case 5. If x3 < u1 then x3 < u2 < u1 and so, un+1 < un for all n. In conclusion,

{un} converges to x3.


