PUTNAM PRACTICE SET 6

PROF. DRAGOS GHIOCA

Problem 1. Let a and s be real numbers satisfying the following properties:

- $0<a \leq 1$; and
- $s>0$, but $s \neq 1$.

Prove that $\frac{1-s^{a}}{1-s} \leq(1+s)^{a-1}$.
Solution. We observe that replacing s by $1 / s$ yields the same inequality since

$$
\frac{1-\frac{1}{s^{a}}}{1-\frac{1}{s}}=\frac{1}{s^{a-1}} \cdot \frac{1-s^{a}}{1-s}
$$

and $(1+1 / s)^{a-1}=\frac{1}{s^{a-1}} \cdot(1+s)^{a-1}$. So, from now on, we assume $0<s<1$. Also, we may assume $0<a<1$ because the case $a=1$ is clear. We let

$$
f_{a}(s):=-\left(1-s^{a}\right)+(1-s) \cdot(1+s)^{a-1} \text { for } 0<s<1
$$

We observe that $f_{a}(0)=0=f_{a}(1)$ and so, in order to prove that $f_{a}(s)>0$ for $0<s<1$, it suffices to prove that there exists a unique $d \in(0,1)$ such that f_{a} is increasing on $(0, d)$ and then f_{a} is decreasing on $(d, 1)$; this will guarantee that $f_{a}(s)>0$ for all $0<s<1$.

So, we compute

$$
\begin{aligned}
& f_{a}(s)^{\prime} \\
&=a s^{a-1}-(1+s)^{a-1}+(1-s) \cdot(a-1) \cdot(1+s)^{a-2} \\
&=s^{a-1} \cdot\left(a-(1+1 / s)^{a-1}-(1-1 / s) \cdot(a-1) \cdot(1+1 / s)^{a-2}\right) \\
&=s^{a-1} \cdot g_{a}(1 / s)
\end{aligned}
$$

where $g_{a}(x):=a-(1+x)^{a-1}-(1-x) \cdot(a-1) \cdot(1+x)^{a-2}$, which is defined for $x>1$ (note that x corresponds to $1 / s$, where $0<s<1$). Once again we differentiate: $g_{a}^{\prime}(x)$

$$
\begin{aligned}
& =-(a-1) \cdot(1+x)^{a-2}+(a-1) \cdot(1+x)^{a-2}-(1-x) \cdot(a-1) \cdot(a-2)(1+x)^{a-3} \\
& =-(a-1)(a-2) \cdot(1-x) \cdot(1+x)^{a-3}>0
\end{aligned}
$$

since $0<a<1$ and $x>1$. On the other hand, $g_{a}(1)=a-2^{a-1}$ and we view it as a function of a, i.e.,

$$
h(a):=a-2^{a-1} \text { for } 0<a<1
$$

We have

$$
h^{\prime}(a)=1-\ln (2) \cdot 2^{a-1}
$$

which is decreasing and its smallest value is obtained for $a=1$ and then

$$
h^{\prime}(a)>h^{\prime}(1)=1-\ln (2)>0 \text { for } 0<a<1
$$

So, $h(x)$ is increasing and $h(a)<h(1)=0$ for all $0<a<1$. In conclusion, $g_{a}(1)<0$ and because g_{a} is increasing, in order to determine the sign of $g_{a}(x)$, we need to compute

$$
\lim _{x \rightarrow \infty} g_{a}(x)=a>0
$$

because $0<a<1$. In conclusion, there exists some $c \in(1, \infty)$ such that $g_{a}(x)<0$ for all $x \in(1, c)$ and $g_{a}(x)>0$ for all $x \in(c, \infty)$. Hence, letting $d:=1 / c \in(0,1)$, we obtain that $f_{a}^{\prime}(s)>0$ for all $s \in(0, d)$ and $f_{a}^{\prime}(s)<0$ for all $s \in(d, 1)$. This concludes our proof that $f_{a}(s)>0$ for all $0<s<1$ (since $f_{a}(s)$ increases on $(0, d)$ starting from $f(0)=0$ and then it decreases on $(d, 1)$ ending at $\left.f_{a}(1)=0\right)$.

Problem 2. Let S be the set of all real numbers of the form $\frac{m+n}{\sqrt{m^{2}+n^{2}}}$ where m and n are positive integers. Prove that for each two distinct elements $u<v$ contained in S, there exists another element $w \in S$ such that $u<w<v$.

Solution. We observe that letting $r:=\frac{m}{n}$ (where $m \leq n$), then

$$
\frac{m+n}{\sqrt{m^{2}+n^{2}}}=\frac{1+r}{\sqrt{1+r^{2}}}
$$

So, we let $f(r):=\frac{1+r}{\sqrt{1+r^{2}}}$ for all rational numbers $0<r \leq 1$. Now, we observe that the above function f is increasing since

$$
f^{\prime}(x)=\frac{1 \cdot \sqrt{1+x^{2}}-(1+x) \cdot \frac{2 x}{2 \sqrt{1+x^{2}}}}{1+x^{2}}=\frac{1-x}{\left(1+x^{2}\right)^{\frac{3}{2}}}>0
$$

if $0<x<1$. So, for any distinct elements $u<v$ in S, there exist $0<r_{1}<r_{2} \leq 1$ such that $u=f\left(r_{1}\right)$ and $v=f\left(r_{2}\right)$. Hence, $w:=f\left(\frac{r_{1}+r_{2}}{2}\right) \in S$ and $u<w<v$.

Problem 3. We consider a set S of finitely many disks in the cartesian plane (of arbitrary centers and arbitrary radii) and we let A be the area of the region represented by their union. Prove that there exists a subset $S_{0} \subseteq S$ satisfying the following two properties:

- any two disks from S_{0} are disjoint.
- the sum of the areas of the disks from S_{0} is at least $\frac{A}{9}$.

Solution. We order the radii of the given disks D_{1}, \ldots, D_{n} in decreasing order $r_{1} \geq r_{2} \geq \cdots \geq r_{n}$. Also, we let D_{i}^{\prime} (for $i=1, \ldots, n$) be the disks with the same centers O_{i} as the corresponding disk D_{i} but with its radii $r_{i}^{\prime}:=3 r_{i}$ for $i=1, \ldots, n$. Now, we select the disks $D_{i_{j}}$ for $j=1, \ldots, m$ as follows: i_{j} is the smallest index k with the property that D_{k} is not contained in $\bigcup_{\ell<j} C_{i_{\ell}}^{\prime}$. So, $i_{1}:=1$ and clearly, $m \leq n$ (i.e., the above process is destined to end in finitely many steps and at one moment there is no additional disk we can select in our process). Hence,

$$
\bigcup_{i=1}^{n} D_{i} \subseteq \bigcup_{j=1}^{m} D_{i_{j}}^{\prime}
$$

and so, the area of $\bigcup_{j=1}^{m} D_{i_{j}}$ is $\frac{1}{9}$ times the area of $\bigcup_{j=1}^{m} D_{i_{j}}^{\prime}$ and so, the area of $\bigcup_{i=1}^{m} D_{i_{j}}$ is at least $\frac{1}{9}$ times the area of $\bigcup_{i=1}^{n} D_{i}$.

On the other hand, we claim that there are no points in common for the disks $D_{i_{1}}, \ldots, D_{i_{m}}$. Indeed, if there is a point x in common for the disks $D_{i_{k}}$ and $D_{i_{\ell}}$ for $k<\ell$, then we have that for each point y in the disk $D_{i_{\ell}}$,

$$
\begin{aligned}
\operatorname{dist}\left(O_{i_{k}}, y\right) & \\
& \leq \operatorname{dist}\left(O_{i_{k}}, x\right)+\operatorname{dist}\left(x, O_{i_{\ell}}\right)+\operatorname{dist}\left(O_{i_{\ell}}, y\right) \\
& \leq r_{i_{k}}+r_{i_{\ell}}+r_{i_{\ell}} \\
& \leq r_{i_{k}}+2 r_{i_{\ell}} \\
& \leq 3 r_{i_{k}}
\end{aligned}
$$

which yields that y is contained in $D_{i_{k}}^{\prime}$. In other words, $D_{i_{\ell}}$ is contained in $D_{i_{k}}^{\prime}$, where $k<\ell$; this contradicts our choice of i_{ℓ} which has the property that $D_{i_{\ell}}$ is not contained in $\bigcup_{j<\ell} D_{i_{j}}^{\prime}$. In conclusion, the disks $D_{i_{j}}$ (for $j=1, \ldots, m$) are indeed disjoint and the sum of their areas is at least $\frac{1}{9}$ times the area of the union of all disks D_{1}, \ldots, D_{n}.

Problem 4. Let $\left\{u_{n}\right\}_{n \geq 1}$ be a recurrence sequence defined by $u_{n+1}=\frac{\sqrt[3]{64 u_{n}+15}}{4}$ for each $n \geq 1$. Find $\lim _{n \rightarrow \infty} u_{n}$.

Solution. If there exists a limit L to the above sequence, then we must have

$$
L=\frac{\sqrt[3]{64 L+15}}{4}
$$

i.e., $64 L^{3}=64 L+15$, which suggests that the sequence either converges to one of the roots of the above equation, or that the sequence diverges to $\pm \infty$. On the other hand, since the function $f(x):=\frac{\sqrt[3]{64 x+15}}{4}$ is increasing, we get that the relation between u_{1} and u_{2} determines whether the sequence is either increasing, or decreasing for all n, i.e., if $u_{1}<u_{2}$, then $u_{n}<u_{n+1}$ (for all n), and if $u_{1}>u_{2}$ then $u_{n}>u_{n+1}($ for all $n)$. Now, the roots of the equation

$$
64 x^{3}-64 x-15=0
$$

are $x_{2}=-\frac{1}{4}$ and $x_{1}=\frac{1-\sqrt{61}}{8}$ and $x_{3}=\frac{1+\sqrt{61}}{8}$. So, we have several cases:
Case 1. If $u_{1}=x_{i}$ for some $i=1,2,3$, then $x_{n}=u_{i}$ for all n and therefore, the limit is simply u_{i} in this case.

Case 2. If $u_{1}<x_{1}$, then $u_{2}=f\left(u_{1}\right)<f\left(x_{1}\right)=x_{1}$ but also $u_{2}>u_{1}$, which means that the sequence $\left\{u_{n}\right\}$ converges to x_{1} in this case.

Case 3. If $x_{1}<u_{1}<x_{2}$ then $x_{1}<u_{n}<x_{2}$ for all n and moreover, $u_{2}<u_{1}$ and so, $u_{n+1}<u_{n}$ for all n. Therefore, the sequence $\left\{u_{n}\right\}$ converges to x_{1} in this case.

Case 4. If $x_{2}<u_{1}<x_{3}$ then $x_{2}<u_{n}<x_{3}$ for all n and moreover, $u_{1}<u_{2}$ and so, $u_{n}<u_{n+1}$ for all n. Therefore, the sequence $\left\{u_{n}\right\}$ converges to x_{3}.

Case 5. If $x_{3}<u_{1}$ then $x_{3}<u_{2}<u_{1}$ and so, $u_{n+1}<u_{n}$ for all n. In conclusion, $\left\{u_{n}\right\}$ converges to x_{3}.

