
PUTNAM PRACTICE SET 5

PROF. DRAGOS GHIOCA

Problem 1. Let N0 := N ∪ {0}. We consider a function f : N −→ N0 satisfying
the following properties:

(a) for any m,n ∈ N, we have that f(m+ n)− f(m)− f(n) ∈ {0, 1}
(b) f(2) = 0;
(c) f(3) > 0; and
(d) f(9999) = 3333.

Compute f(2019).

Solution. We get immediately f(0) = 0 (from m = n = 0). From m = n = 1
and f(0) = 0, we get f(1) = 0. So, using n = 1 and m arbitrary, we conclude that
f(m + 1) ≥ f(m) for all m. Since f(3) > 0, then using m = 1, n = 2 along with
f(1) = f(2) = 0, we conclude that f(3) = 1. Using n = 3 and m arbitrary, we
conclude that f(m + 3) ≥ f(m) + 1 for all m ≥ 0. In particular, this means that
f(m) ≥

[
m
3

]
for all m ≥ 0. Since f(9999) = 3333 we conclude that we must have

equality at each step and so, f(2019) =
[
2019
3

]
= 673.

Note that if f(2019) ≥ 674, then inductively we would have gotten that f(9999) =
f(2019 + 3 · 2660) ≥ 674 + 2660 > 3333, contradiction.

Problem 2. Find all real numbers a for which the equation

16x4 − ax3 + (2a+ 17)x2 − ax+ 16 = 0

has 4 distinct real roots which form a geometric progression.

Solution. We solve equations of the form

Ax4 +Bx3 + Cx2 +Bx+A = 0

by dividing by x2 (since x = 0 is not a solution because A 6= 0) and then defining
a new variable y = x+ 1

x . So, in our case, we have

16x2 − ax+ (2a+ 17)− a

x
+

16

x2
= 0.

Letting y = x + 1
x , we have that x2 + 1

x2 = y2 − 2 and so, our equation above
transforms into a quadratic equation:

16(y2 − 2)− ay + (2a+ 17) = 0 i.e. 16y2 − ay + 2a− 15 = 0.

Now, note that since the original quartic equation has 4 distinct real roots, then
that means the above quadratic equation has two distinct real roots y1 and y2 and
then the 4 roots xi of the quartic equation correspond to solutions of the equations
x + 1

x = yj . Next, we let x1 and x2 be the solutions of the equation x + 1
x = y1;
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clearly, they satisfy x2 = 1
x1

. We also let x3 and x4 be the solutions of the equation

x+ 1
x = y2 and so, again x4 = 1

x3
. In particular, this means that

x1x2 = x3x4 = 1.

Now, since we assumed that the roots xi form a geometric progression, then they
are of the form qri for i = 0, 1, 2, 3 (for some real numbers q and r). Furthermore,
since we also assumed these roots xi are distinct, then we have that q 6= 0 and also,
we have that r /∈ {−1, 0, 1}. Now, for the four numbers q, qr, qr2, qr3, the only
way for the product of two of them to equal the product of the other two numbers
would be:

q · qr3 = qr · qr2

since any other combination would force that r = ±1, contradiction. Therefore, at
the expense of relabeling the roots xi, we have the following:

x1 = q, x2 = qr3, x3 = qr and x4 = qr2.

In particular, using that x1x2 = x3x4 = 1, we obtain that

q2r3 = 1; so r =
1

3
√
q2
.

Hence, x1 = q, x2 = 1
q , x3 = 3

√
q and x4 = 1

3
√
q . Using the fact that x1 and x2 are

the roots of
x2 − y1x+ 1 = 0,

while x3 and x4 are the roots of

x2 − y2x+ 1 = 0,

we get that

q +
1

q
= y1 and 3

√
q +

1
3
√
q

= y2.

Now, letting t := 3
√
q and observing that

t3 +
1

t3
=

(
t+

1

t

)3

− 3

(
t+

1

t

)
,

we conclude that
y1 = y32 − 3y2.

Therefore, in order to have the four roots of the original quartic equation forming
a geometric progression, all we need is for the two roots y1 and y2 of the quadratic
equation

16y2 − ay + 2a− 15 = 0

satisfy the relation y1 = y32 − 3y2. Now, from the Viéte’s equations, we have:

y1 + y2 =
a

16
and y1y2 =

2a− 15

16
,

which means that

y1y2 − 2(y1 + y2) = −15

16
and so,

(y1 − 2)(y2 − 2) =
49

16
=

(
7

4

)2

.

On the other hand, using that y1 = y32 − 3y2, we have

y1 − 2 = y32 − 3y2 − 2 = (y2 − 2)(y22 + 2y2 + 1) and so,
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(y1 − 2)(y2 − 2) = (y2 − 2)2(y2 + 1)2 and thus, either

(y2 − 2)(y2 + 1) =
7

4
or (y2 − 2)(y2 + 1) = −7

4
.

Since y2 = x3 + 1
x3

, we have that |y2| ≥ 2 (since x3 is a real number). The only
solution in absolute value at least equal to 2 from the above 4 roots of the above
2 quadratic equations is y2 = 5

2 . This leads to roots x3 and x4 being 2 and 1
2 .

Furthermore, y1 = 125
8 −

15
2 = 65

8 and so,

a = 16 · (y1 + y2) = 16 · 85

8
= 170.

Problem 3. Let P (x) be a monic polynomial of degree 3 with integer coefficients.
If one of its roots equals the product of the other two roots, then prove that there
exists an integer m such that

2P (−1) = m · (P (1) + P (−1)− 2− 2P (0)) .

Solution. We have that

P (x) = (x− r)(x− s)(x− rs),
which means that

P (x) := x3 − (r + s+ rs)x2 + rs(1 + r + s)x− r2s2.
In particular, 2P (−1) := −2(1 + r)(1 + s)(1 + rs), while

P (1) + P (−1)− 2− 2P (0)

= −2(r + s+ rs)− 2r2s2 − 2 + 2r2s2

= −2(1 + r)(1 + s).

So, the number m from the conclusion is 1+rs and thus all we need to show is that
rs ∈ Z. However, we know P ∈ Z[x], which means that r2s2 ∈ Z. On the other
hand, both rs(1 + r+ s) and r+ s+ rs are integers. We let thus a := r+ s+ rs ∈ Z
and also, b := rs(1 + r + s) ∈ Z, which means that

b = rs(1 + a− rs)
and so, using that r2s2 ∈ Z, we conclude that rs must be a rational number (unless
a = −1, which would be equivalent with r or s be equal to −1 and then we could
take m = 0 since P (−1) = 0).

Now, if a number z has the property that it is rational and its square is an
integer, then it must be an integer itself. The reasoon for this is because otherwise
z = α/β, for some coprime integers α and β and moreover, β > 1 and then we
could take p be a prime number dividing β and not dividing α, which would lead
to z2 = α2/β2 not be an integer since the denominator is divisible by p, while the
numerator isn’t divisible by p. So, indeed rs ∈ Z and thus m is an integer, as
claimed.

Problem 4. Let m,n ∈ N. In a box there are m white balls and n black balls.
We extract randomly two balls from the box; if the two balls have different colors,
then we put back in the box a white ball, while if the two balls have the same color,
then we put back in the box a black ball. We repeat this procedure until there is
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left in the box only one single ball. What is the probability that this last ball is
white?

Solution. We observe that no matter what balls we extract the parity of the
number of white balls is always preserved. This means that the last remaining ball
is white if and only if m is odd (regardless of how we extracted the balls prior to
this last moment).


