PUTNAM PRACTICE SET 4

PROF. DRAGOS GHIOCA

Problem 1. Let $\left\{F_{n}\right\}_{n \geq 1}$ be the Fibonacci sequence, i.e., $F_{1}=1, F_{2}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for each $n \geq 1$.

Find all positive real numbers a and b with the property that for each $n \geq 1$, we have that $a F_{n}+b F_{n+1}$ is another element of the Fibonacci sequence.

Solution. We let $\alpha: \mathbb{N} \longrightarrow \mathbb{N}$ be the function having the property that

$$
a F_{n}+b F_{n+1}=F_{\alpha(n)} \text { for all } n \geq 1
$$

Adding the above identity for two consecutive integers, we get

$$
\begin{aligned}
F_{\alpha(n+1)}+F_{\alpha(n)} & \\
& =\left(a F_{n+1}+b F_{n+2}\right)+\left(a F_{n}+b F_{n+1}\right) \\
& =a\left(F_{n+1}+F_{n}\right)+b\left(F_{n+2}+F_{n+1}\right) \\
& =a F_{n+2}+b F_{n+3} \\
& =F_{\alpha(n+2)} .
\end{aligned}
$$

Now, for any $r, s, t \geq 3$ we have that $F_{r}+F_{s}=F_{t}$ if and only if $r+2=s+1=t$ (after possibly interchanging r and s). Indeed, in order to prove this, we note that we may assume without loss of generality that $r \leq s$ and also, we definitely need $t \geq s+1$. Furthermore, for $3 \leq r \leq s$, we observe that we cannot have $r=s$ since
$F_{r}+F_{s}=2 F_{s}<F_{s}+F_{s+1}=F_{s+2}$ and also $F_{r}+F_{s}>F_{s-1}+F_{s}=F_{s+1}$.
So, indeed, $r<s<t$. Now, if $t \geq s+2$, then

$$
F_{t} \geq F_{s+2}=F_{s+1}+F_{s}>F_{s}+F_{r} .
$$

So, we must have that $s+1=t$ and then $F_{t}-F_{s}=F_{s-1}$, which means that $r=s-1$ (note that $r \geq 3$ and so, $F_{r}>1$). Therefore, $F_{r}+F_{s}=F_{t}$ with $3 \leq r \leq s \leq t$ occurs only if $r+2=s+1=t$ yields that for $n \geq 2$ (which would guarantee that $\alpha(2)>1)$ we have that

$$
F_{\alpha(n)}+F_{\alpha(n+1)}=F_{\alpha(n+2)},
$$

which yields $\alpha(n)+2=\alpha(n+1)+1=\alpha(n+2)$. So, $\alpha(n)=n+c$ for some integer c. On the other hand, a simple induction - using the general form of the Fibonacci sequence:

$$
F_{n}=\frac{1}{\sqrt{5}} \cdot\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

we obtain that

$$
F_{c-1} F_{n}+F_{c} F_{n+1}=F_{n+c} .
$$

So, for any (a, b) of the form $\left(F_{c-1}, F_{c}\right)$ for $c \geq 2$ (so that both a and b need to be strictly positive) we obtain the desired conclusion for this Problem.

Problem 2. For any polynomial $P \in \mathbb{C}[x]$ and for each complex number a, we denote by P_{a} the set of all $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=a$. Let $P, Q \in \mathbb{C}[x]$ such that $P_{2}=Q_{2}$ and $P_{5}=Q_{5}$. Prove that $P=Q$.

Solution. Let $\alpha_{1}, \ldots, \alpha_{r}$ be the elements of $P_{2}=Q_{2}$ and also, let $\beta_{1}, \ldots, \beta_{s}$ be the elements of $P-5=Q_{5}$; then we let k_{1}, \ldots, k_{r} be the respective multiplicities of $\alpha_{1}, \ldots, \alpha_{r}$ as roots for $P(x)-2$, and also we let m_{1}, \ldots, m_{s} be the respective multiplicities of $\beta_{1}, \ldots, \beta_{s}$ as roots of $P(x)-5$. Then $k_{1}-1, \ldots, k_{r}-1$ are the multiplicities of $\alpha_{1}, \ldots, \alpha_{r}$ as roots of $P^{\prime}(x)$ and similarly, $m_{1}-1, \ldots, m_{s}-1$ are the multiplicities of $\beta_{1}, \ldots, \beta_{s}$ as roots of $P^{\prime}(x)=0$. Then - letting d be the degree of $P(x)$ - we get that

$$
d-1 \geq \sum_{i=1}^{r}\left(\alpha_{i}-1\right)+\sum_{j=1}^{s}\left(\beta_{j}-1\right)
$$

On the other hand, we have $d=\sum_{i=1}^{r} \alpha_{i}$ and $d=\sum_{j=1}^{s} \beta_{j}$ (since these are the multiplicities of the roots of $P(x)-2$, respectively of $P(x)-5$); so, we obtain

$$
d-1 \geq 2 d-r-s, \text { which yields } r+s \geq d+1
$$

Similarly, we get $r+s \geq D+1$, where D is the degree of $Q(x)$. Thus we get that the polynomial $P(x)-Q(x)$, which has degree bounded above by $\max \{d, D\}$ has at least $r+s$ roots $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}$; in conclusion, we must have $P=Q$ identically.

Problem 3. Let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. We have a function $f: \mathbb{N}_{0}^{2} \longrightarrow \mathbb{N}_{0}$ satisfying the following properties:

- $f(0, y)=y+1$ for each $y \in \mathbb{N}_{0}$;
- $f(x+1,0)=f(x, 1)$ for each $x \in \mathbb{N}_{0}$; and
- $f(x+1, y+1)=f(x, f(x+1, y))$ for each $x, y \in \mathbb{N}_{0}$.

Find $f(4,2019)$.
Solution. We have $f(1, y+1)=f(0, f(1, y))=f(1, y)+1$ for all $y \in \mathbb{N}_{0}$ and so, $f(1, y)=f(1,0)+y=f(0,1)+y=2+y$. Next, we find
$f(2, y+1)=f(1, f(2, y))=f(2, y)+2$ for all $y \in \mathbb{N}_{0}$
and so, $f(2, y)=f(2,0)+2 y=f(1,1)+2 y=3+2 y$ for all $y \in \mathbb{N}_{0}$. Next,

$$
f(3, y+1)=f(2, f(3, y))=3+2 f(3, y) .
$$

Thus, letting $g(y):=f(3, y)+3$, we obtain that

$$
g(y+1)=2 g(y) \text { for all } y \in \mathbb{N}_{0}
$$

and so, $f(3, y)=2^{y}(f(3,0)+3)-3=2^{y}(f(2,1)+3)-3=2^{y} \cdot 8-3=2^{y+3}-3$.
Finally,

$$
f(4, y+1)=f(3, f(4, y))=2^{f(4, y)+3}-3
$$

for all $y \in \mathbb{N}_{0}$. We let $h(y):=f(4, y)+3$ and thus

$$
h(y+1)=2^{h(y)} \text { for all } y \in \mathbb{N}_{0}
$$

and so, $h(y)=2^{2^{2 \cdots}}$, where there are $y+3$ iterated powers of 2 (note that $h(0)=$ $\left.f(4,0)+3=f(3,1)+3=2^{4}=2^{2^{2}}\right)$. Hence

$$
f(4,2019)=2^{2^{2^{2^{\cdots}}}}-3,
$$

where there are 2022 iterated powers of 2 in the above formula.

Problem 4. We consider all possible sequences $\left\{x_{n}\right\}_{n \geq 0}$ of positive real numbers having the properties that $x_{0}=1$ and also that $x_{n+1} \leq x_{n}$ for each $n \geq 0$.
(I) Prove that for each such sequence $\left\{x_{n}\right\}_{n \geq 0}$, we have that the series

$$
\sum_{i=0}^{\infty} \frac{x_{i}^{2}}{x_{i+1}}
$$

is either divergent to $+\infty$, or it coverges to a real number at least equal to 4.
(II) Prove that there exists exactly one such sequence $\left\{x_{n}\right\}_{n \geq 0}$ for which the series

$$
\sum_{i=0}^{\infty} \frac{x_{i}^{2}}{x_{i+1}}
$$

equals 4.
Solution. We let $\left\{y_{n}\right\}_{n \geq 1}$ with the property that

$$
x_{n}=\prod_{i=1}^{n} y_{i} \text { for each } n \geq 1
$$

in other words, $y_{n}:=\frac{x_{n}}{x_{n-1}}$. By our hypothesis, we have that $y_{n} \leq 1$ for each $n \geq 1$. So, the above series $\sum_{n \geq 0} \frac{x_{n}^{2}}{x_{n+1}}$ equals

$$
\frac{1}{y_{1}}+\frac{y_{1}}{y_{2}}+\frac{y_{1} y_{2}}{y_{3}}+\cdots+\frac{y_{1} y_{2} \cdots y_{n}}{y_{n+1}}+\cdots
$$

We denote by $f\left(y_{1}, \ldots, y_{n}, \ldots\right)$ the above sum. Clearly,

$$
f\left(y_{1}, \ldots, y_{n}, \ldots\right)=\frac{1}{y_{1}}+y_{1} \cdot f\left(y_{2}, \ldots, y_{n}, \ldots\right) .
$$

So, letting f_{0} be the smallest possible sum attained by a choice of some sequence $\left\{y_{n}\right\}$ and then we see that

$$
f_{0}=\frac{1}{y_{1}}+y_{1} f_{0}
$$

So, $f_{0}:=\frac{1}{y_{1}\left(1-y_{1}\right)}$ and clearly, we see that the minimum value of f_{0} is obtained for $y_{1}=\frac{1}{2}$. So, the smallest value for the above sum of the series is 4 and it is attained when $y_{1}=\frac{1}{2}$ and inductively, when each $y_{n}=\frac{1}{2}$, which translates to $x_{n}=\frac{1}{2^{n}}$.

