PUTNAM PRACTICE SET 3

PROF. DRAGOS GHIOCA

Problem 1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function satisfying the relation:

$$f(x+y+xy) = f(x) + f(y) + f(xy) \text{ for each } x, y \in \mathbb{R}.$$

Prove that f(x+y) = f(x) + f(y) for each $x, y \in \mathbb{R}$.

Solution. Letting x = y = 0 we obtain f(0) = 3f(0) and so, f(0) = 0. Then letting y = -1 (and x arbitrary) we obtain

$$f(-1) = f(x) + f(-1) + f(-x),$$

which yields f(-x) = -f(x) for all $x \in \mathbb{R}$. Now, we simply replace x and y by -x, respectively -y and obtain

$$f(xy - x - y) = f(xy) + f(-x) + f(-y) = f(xy) - f(x) - f(y)$$

which combined with the main relation yields

$$f(xy - (x + y)) + f(xy + (x + y)) = 2f(xy).$$

Now, for fixed xy =: a, we observe that x + y varies on the entire set of real numbers (i.e., it can be arbitrarily large and negative and also arbitrarily large and positive). This proves that for all $a, b \in \mathbb{R}$ we have

$$f(a-b) + f(a+b) = 2f(a).$$

However, letting a = b in the above expression we get that

$$f(0) + f(2a) = 2f(a)$$
 and so, $f(2a) = 2f(a)$ because $f(0) = 0$.

Thus, f(a-b) + f(a+b) = f(2a) for all $a, b \in \mathbb{R}$ which yields the relation asked in the problem.

Problem 2. Find all positive real numbers a with the property that the equation $\log_a(x) - x = 0$ has exactly one real solution.

Solution. We split our analysis into several cases:

Case 1. 0 < a < 1.

In this case, $\log_a(x)$ decreases from $+\infty$ to $-\infty$, while x increases from 0 to $+\infty$; so, using that $f(x) := \log_a(x) - x$ is a continuous function (on $(0, +\infty)$), then we conclude that for each $a \in (0, 1)$ there exists a unique $x \in (0, +\infty)$ such that f(x) = 0, i.e., $\log_a(x) = x$.

Case 2. a > 1.

In this case the derivative of the above defined function f(x) is

$$f'(x) = \frac{1}{x \cdot \ln(a)} - 1$$

and so, f(x) is increasing on $(0, 1/\ln(a))$, while f(x) is decreasing on $(1/\ln(a), +\infty)$. We compute the global maximum of f(x) on $(0, +\infty)$:

$$f\left(\frac{1}{\ln(a)}\right) = \frac{\ln\left(\frac{1}{\ln(a)}\right)}{\ln(a)} - \frac{1}{\ln(a)} = -\frac{\ln(\ln(a)) + 1}{\ln(a)}.$$

Now, if the global maximum of f(x) is 0 then there exists indeed a single value of x for which $\log_a(x) = x$; so,

Subcase 2(i). If $a = e^{\frac{1}{e}}$ then there exists a unique value of x such that $\log_a(x) = x$.

Now, if $\ln(\ln(a)) + 1 > 0$, then the global maximum of f(x) is negative and therefore,

Subcase 2(ii). If $a > e^{\frac{1}{e}}$ then there exists no x such that $\log_a(x) = x$.

Finally, if $\ln(\ln(a)) + 1 < 0$, then the global maximum of f(x) is positive and then we conclude that

Subcase 2(iii). If $1 < a < e^{\frac{1}{e}}$ then there exist exactly two values of x (one in the interval $(0, 1/\ln(a))$ and the other value in $(1/\ln(a), +\infty)$ since $\lim_{x\to 0^+} f(x) = \lim_{x\to +\infty} f(x) = -\infty$) such that $\log_a(x) = x$.

Problem 3.

- (a) Find all integers n > 2 for which there exists an integer $m \ge n$ such that m divides the least common multiple of $m 1, m 2, \dots, m n + 1$.
- (b) Find all positive integers n > 2 for which there exists exactly one integer $m \ge n$ such that m divides the least common multiple of $m 1, m 2, \dots, m n + 1$.

Solution. Let p^{α} be a prime power appearing in the prime power factorization of m. Then m dividing lcm $[m-1, \dots, m-(n-1)]$ yields that p^{α} must divide one of the numbers m-i (for $i = 1, \dots, n-1$) and so, p^{α} must divide m-(m-i) = i. In conclusion, m divides lcm $[m-1, \dots, m-(n-1)]$ if and only if m divides lcm $[1, \dots, n-1] := L(n)$. So, the existence of at least one integer $m \ge n$ with the property that it divides lcm $[m-1, \dots, m-(n-1)]$ is equivalent with asking that $L(n) \ge n$. Now, since $L(n) \ge (n-1)(n-2)$ and

$$(n-1)(n-2) \ge n$$
 for all $n \ge 4$,

while L(3) = 2 < 3 and L(2) = 1 < 2, we conclude that for all $n \ge 4$ there exists at least one integer m such that m divides $lcm[m-1, \dots, m-(n-1)]$.

Now, if we require that there exists precisely one integer $m \ge n$ dividing $\operatorname{lcm}[m-1, \dots, m-(n-1)]$ then we actually ask that there exists precisely one integer at least equal to n which divides L(n), i.e., that integer would be L(n). So, we're asking in this case for which $n \ge 4$ we have that the only divisor of $\operatorname{lcm}[1, \dots, n-1]$ at least equal to n is L(n). We claim that in this case we must have that n = 4.

First of all, we have $L(4) = \operatorname{lcm}[1, 2, 3] = 6$ and so indeed only 6 is at least equal to 4 and divides 6. Now, if $n \ge 5$, then both (n-1)(n-2) and also (n-2)(n-3) are greater than n and they divide $\operatorname{lcm}[1, \ldots, n-1]$, which finishes our proof.

Problem 4. Find the minimum of

$$\max\{a+b+c, b+c+d, c+d+e, d+e+f, e+f+g\}$$

where the real numbers a, b, c, d, e, f, g vary among all the possible nonnegative solutions to the equation a + b + c + d + e + f + g = 1.

Solution. We have that

 $(a+b+c)+(d+e+f)+(e+f+g)\geq a+b+c+d+e+f+g=1$ and therefore, $M:=\max\{a+b+c,b+c+d,c+d+e,d+e+f,e+f+g\}\geq \frac{1}{3}.$ On the other hand, this minimum value of $\frac{1}{3}$ for M is attained in the case

$$a = \frac{1}{3}, b = c = 0, d = \frac{1}{3}, e = f = 0, g = \frac{1}{3}.$$