PUTNAM PRACTICE SET 3

PROF. DRAGOS GHIOCA

Problem 1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function satisfying the relation:

$$
f(x+y+x y)=f(x)+f(y)+f(x y) \text { for each } x, y, \in \mathbb{R} .
$$

Prove that $f(x+y)=f(x)+f(y)$ for each $x, y \in \mathbb{R}$.
Solution. Letting $x=y=0$ we obtain $f(0)=3 f(0)$ and so, $f(0)=0$. Then letting $y=-1$ (and x arbitrary) we obtain

$$
f(-1)=f(x)+f(-1)+f(-x),
$$

which yields $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Now, we simply replace x and y by $-x$, respectively $-y$ and obtain

$$
f(x y-x-y)=f(x y)+f(-x)+f(-y)=f(x y)-f(x)-f(y)
$$

which combined with the main relation yields

$$
f(x y-(x+y))+f(x y+(x+y))=2 f(x y) .
$$

Now, for fixed $x y=: a$, we observe that $x+y$ varies on the entire set of real numbers (i.e., it can be arbitrarily large and negative and also arbitrarily large and positive). This proves that for all $a, b \in \mathbb{R}$ we have

$$
f(a-b)+f(a+b)=2 f(a) .
$$

However, letting $a=b$ in the above expression we get that

$$
f(0)+f(2 a)=2 f(a) \text { and so, } f(2 a)=2 f(a) \text { because } f(0)=0 .
$$

Thus, $f(a-b)+f(a+b)=f(2 a)$ for all $a, b \in \mathbb{R}$ which yields the relation asked in the problem.

Problem 2. Find all positive real numbers a with the property that the equation $\log _{a}(x)-x=0$ has exactly one real solution.

Solution. We split our analysis into several cases:
Case 1. $0<a<1$.
In this case, $\log _{a}(x)$ decreases from $+\infty$ to $-\infty$, while x increases from 0 to $+\infty$; so, using that $f(x):=\log _{a}(x)-x$ is a continuous function (on $(0,+\infty)$), then we conclude that for each $a \in(0,1)$ there exists a unique $x \in(0,+\infty)$ such that $f(x)=0$, i.e., $\log _{a}(x)=x$.

Case 2. $a>1$.
In this case the derivative of the above defined function $f(x)$ is

$$
f^{\prime}(x)=\frac{1}{x \cdot \ln (a)}-1
$$

and so, $f(x)$ is increasing on $(0,1 / \ln (a))$, while $f(x)$ is decreasing on $(1 / \ln (a),+\infty)$.
We compute the global maximum of $f(x)$ on $(0,+\infty)$:

$$
f\left(\frac{1}{\ln (a)}\right)=\frac{\ln \left(\frac{1}{\ln (a)}\right)}{\ln (a)}-\frac{1}{\ln (a)}=-\frac{\ln (\ln (a))+1}{\ln (a)}
$$

Now, if the global maximum of $f(x)$ is 0 then there exists indeed a single value of x for which $\log _{a}(x)=x$; so,

Subcase 2(i). If $a=e^{\frac{1}{e}}$ then there exists a unique value of x such that $\log _{a}(x)=$ x.

Now, if $\ln (\ln (a))+1>0$, then the global maximum of $f(x)$ is negative and therefore,

Subcase 2(ii). If $a>e^{\frac{1}{e}}$ then there exists no x such that $\log _{a}(x)=x$.
Finally, if $\ln (\ln (a))+1<0$, then the global maximum of $f(x)$ is positive and then we conclude that

Subcase 2(iii). If $1<a<e^{\frac{1}{e}}$ then there exist exactly two values of x (one in the interval $(0,1 / \ln (a))$ and the other value in $(1 / \ln (a),+\infty)$ since $\lim _{x \rightarrow 0^{+}} f(x)=$ $\left.\lim _{x \rightarrow+\infty} f(x)=-\infty\right)$ such that $\log _{a}(x)=x$.

Problem 3.

(a) Find all integers $n>2$ for which there exists an integer $m \geq n$ such that m divides the least common multiple of $m-1, m-2, \cdots, m-n+1$.
(b) Find all positive integers $n>2$ for which there exists exactly one integer $m \geq n$ such that m divides the least common multiple of $m-1, m-$ $2, \cdots, m-n+1$.

Solution. Let p^{α} be a prime power appearing in the prime power factorization of m. Then m dividing $\operatorname{lcm}[m-1, \cdots, m-(n-1)]$ yields that p^{α} must divide one of the numbers $m-i$ (for $i=1, \ldots, n-1$) and so, p^{α} must divide $m-(m-i)=i$. In conclusion, m divides $\operatorname{lcm}[m-1, \cdots, m-(n-1)]$ if and only if m divides $\operatorname{lcm}[1, \ldots, n-1]:=L(n)$. So, the existence of at least one integer $m \geq n$ with the property that it divides $\operatorname{lcm}[m-1, \cdots, m-(n-1)]$ is equivalent with asking that $L(n) \geq n$. Now, since $L(n) \geq(n-1)(n-2)$ and

$$
(n-1)(n-2) \geq n \text { for all } n \geq 4
$$

while $L(3)=2<3$ and $L(2)=1<2$, we conclude that for all $n \geq 4$ there exists at least one integer m such that m divides $\operatorname{lcm}[m-1, \cdots, m-(n-1)]$.

Now, if we require that there exists precisely one integer $m \geq n$ dividing lcm $[m-$ $1, \cdots, m-(n-1)]$ then we actually ask that there exists precisely one integer at least equal to n which divides $L(n)$, i.e., that integer would be $L(n)$. So, we're asking in this case for which $n \geq 4$ we have that the only divisor of $\operatorname{lcm}[1, \ldots, n-1]$ at least equal to n is $L(n)$. We claim that in this case we must have that $n=4$.

First of all, we have $L(4)=\operatorname{lcm}[1,2,3]=6$ and so indeed only 6 is at least equal to 4 and divides 6 . Now, if $n \geq 5$, then both $(n-1)(n-2)$ and also $(n-2)(n-3)$ are greater than n and they divide $\operatorname{lcm}[1, \ldots, n-1]$, which finishes our proof.

Problem 4. Find the minimum of

$$
\max \{a+b+c, b+c+d, c+d+e, d+e+f, e+f+g\}
$$

where the real numbers a, b, c, d, e, f, g vary among all the possible nonnegative solutions to the equation $a+b+c+d+e+f+g=1$.

Solution. We have that

$$
(a+b+c)+(d+e+f)+(e+f+g) \geq a+b+c+d+e+f+g=1
$$

and therefore, $M:=\max \{a+b+c, b+c+d, c+d+e, d+e+f, e+f+g\} \geq \frac{1}{3}$. On the other hand, this minimum value of $\frac{1}{3}$ for M is attained in the case

$$
a=\frac{1}{3}, b=c=0, d=\frac{1}{3}, e=f=0, g=\frac{1}{3} .
$$

