
PUTNAM PRACTICE SET 3

PROF. DRAGOS GHIOCA

Problem 1. Let f : R −→ R be a function satisfying the relation:

f(x + y + xy) = f(x) + f(y) + f(xy) for each x, y,∈ R.

Prove that f(x + y) = f(x) + f(y) for each x, y ∈ R.

Solution. Letting x = y = 0 we obtain f(0) = 3f(0) and so, f(0) = 0. Then
letting y = −1 (and x arbitrary) we obtain

f(−1) = f(x) + f(−1) + f(−x),

which yields f(−x) = −f(x) for all x ∈ R. Now, we simply replace x and y by −x,
respectively −y and obtain

f(xy − x− y) = f(xy) + f(−x) + f(−y) = f(xy)− f(x)− f(y)

which combined with the main relation yields

f(xy − (x + y)) + f(xy + (x + y)) = 2f(xy).

Now, for fixed xy =: a, we observe that x+y varies on the entire set of real numbers
(i.e., it can be arbitrarily large and negative and also arbitrarily large and positive).
This proves that for all a, b ∈ R we have

f(a− b) + f(a + b) = 2f(a).

However, letting a = b in the above expression we get that

f(0) + f(2a) = 2f(a) and so, f(2a) = 2f(a) because f(0) = 0.

Thus, f(a− b) + f(a+ b) = f(2a) for all a, b ∈ R which yields the relation asked in
the problem.

Problem 2. Find all positive real numbers a with the property that the equation
loga(x)− x = 0 has exactly one real solution.

Solution. We split our analysis into several cases:
Case 1. 0 < a < 1.
In this case, loga(x) decreases from +∞ to −∞, while x increases from 0 to

+∞; so, using that f(x) := loga(x)−x is a continuous function (on (0,+∞)), then
we conclude that for each a ∈ (0, 1) there exists a unique x ∈ (0,+∞) such that
f(x) = 0, i.e., loga(x) = x.

Case 2. a > 1.
In this case the derivative of the above defined function f(x) is

f ′(x) =
1

x · ln(a)
− 1
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and so, f(x) is increasing on (0, 1/ ln(a)), while f(x) is decreasing on (1/ ln(a),+∞).
We compute the global maximum of f(x) on (0,+∞):

f

(
1

ln(a)

)
=

ln
(

1
ln(a)

)
ln(a)

− 1

ln(a)
= − ln(ln(a)) + 1

ln(a)
.

Now, if the global maximum of f(x) is 0 then there exists indeed a single value of
x for which loga(x) = x; so,

Subcase 2(i). If a = e
1
e then there exists a unique value of x such that loga(x) =

x.
Now, if ln(ln(a)) + 1 > 0, then the global maximum of f(x) is negative and

therefore,
Subcase 2(ii). If a > e

1
e then there exists no x such that loga(x) = x.

Finally, if ln(ln(a)) + 1 < 0, then the global maximum of f(x) is positive and
then we conclude that

Subcase 2(iii). If 1 < a < e
1
e then there exist exactly two values of x (one in

the interval (0, 1/ ln(a)) and the other value in (1/ ln(a),+∞) since limx→0+ f(x) =
limx→+∞ f(x) = −∞) such that loga(x) = x.

Problem 3.

(a) Find all integers n > 2 for which there exists an integer m ≥ n such that
m divides the least common multiple of m− 1,m− 2, · · · ,m− n + 1.

(b) Find all positive integers n > 2 for which there exists exactly one integer
m ≥ n such that m divides the least common multiple of m − 1,m −
2, · · · ,m− n + 1.

Solution. Let pα be a prime power appearing in the prime power factorization
of m. Then m dividing lcm[m− 1, · · · ,m− (n− 1)] yields that pα must divide one
of the numbers m− i (for i = 1, . . . , n− 1) and so, pα must divide m− (m− i) = i.
In conclusion, m divides lcm[m − 1, · · · ,m − (n − 1)] if and only if m divides
lcm[1, . . . , n− 1] := L(n). So, the existence of at least one integer m ≥ n with the
property that it divides lcm[m− 1, · · · ,m− (n− 1)] is equivalent with asking that
L(n) ≥ n. Now, since L(n) ≥ (n− 1)(n− 2) and

(n− 1)(n− 2) ≥ n for all n ≥ 4,

while L(3) = 2 < 3 and L(2) = 1 < 2, we conclude that for all n ≥ 4 there exists
at least one integer m such that m divides lcm[m− 1, · · · ,m− (n− 1)].

Now, if we require that there exists precisely one integer m ≥ n dividing lcm[m−
1, · · · ,m − (n − 1)] then we actually ask that there exists precisely one integer at
least equal to n which divides L(n), i.e., that integer would be L(n). So, we’re
asking in this case for which n ≥ 4 we have that the only divisor of lcm[1, . . . , n−1]
at least equal to n is L(n). We claim that in this case we must have that n = 4.

First of all, we have L(4) = lcm[1, 2, 3] = 6 and so indeed only 6 is at least equal
to 4 and divides 6. Now, if n ≥ 5, then both (n− 1)(n− 2) and also (n− 2)(n− 3)
are greater than n and they divide lcm[1, . . . , n− 1], which finishes our proof.

Problem 4. Find the minimum of

max{a + b + c, b + c + d, c + d + e, d + e + f, e + f + g}
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where the real numbers a, b, c, d, e, f, g vary among all the possible nonnegative
solutions to the equation a + b + c + d + e + f + g = 1.

Solution. We have that

(a + b + c) + (d + e + f) + (e + f + g) ≥ a + b + c + d + e + f + g = 1

and therefore, M := max{a + b + c, b + c + d, c + d + e, d + e + f, e + f + g} ≥ 1
3 .

On the other hand, this minimum value of 1
3 for M is attained in the case

a =
1

3
, b = c = 0, d =

1

3
, e = f = 0, g =

1

3
.


