PUTNAM PRACTICE SET 11

PROF. DRAGOS GHIOCA

Problem 1. Find the sum of the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(3^{m} n+3^{n} m\right)}
$$

Solution. We let $a_{n}:=\frac{n}{3^{n}}$ and then we notice that our series is precisely

$$
S:=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m}^{2} a_{n}}{a_{n}+a_{m}}
$$

Clearly, since the series is absolutely convergent,

$$
2 S=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m}^{2} a_{n}}{a_{n}+a_{m}}+\frac{a_{m} a_{n}^{2}}{a_{m}+a_{n}}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m} a_{n}=\left(\sum_{n=1}^{\infty} a_{n}\right)^{2}
$$

Now, the series $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$ represents $f^{\prime}(1)$ for the function

$$
f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}=\frac{x}{3} \cdot \frac{1}{1-\frac{x}{3}}=\frac{x}{3-x}
$$

So, $f^{\prime}(x)=\frac{3}{(3-x)^{2}}$ and therefore, $f^{\prime}(1)=\frac{3}{4}$; so, we conclude that $S=\frac{9}{32}$.
Problem 2. Prove that there exists a positive ocnstant C such that for any polynomial $P \in \mathbb{R}[x]$ of degree less than 2020, we have that

$$
P(0) \leq C \cdot \int_{-1}^{1}|P(x)| \mathrm{dx}
$$

Solution. First, we note that if $P(0)=0$, then any positive constant C would work. So, from now on, assume $P(0) \neq 0$, i.e., 0 is not a root of the polynomial $P(x)$.

Secondly, we observe that if the r_{i} 's are the roots of $P(x)$ (listed with their corresponding multiplicities). So, the problem asks for proving that there exists a positive lower bound for the integral

$$
\int_{-1}^{1} \prod_{i}\left|\frac{x-r_{i}}{r_{i}}\right| \mathrm{dx}
$$

Our strategy is to show that there exists a subinterval $I \subset[-1,1]$ of length larger than some given positive quantity such that for all points x in I, each of the factors $\left|\left(x-r_{i}\right) / r_{i}\right|$ are bounded below by another positive quantity (note that each r_{i} is nonzero according to our initial assumption as above).

Since $P(x)$ has less than 2020 distinct roots, then there exists an interval $I \subset$ $[0,1 / 2]$ of length at least $\frac{1}{10^{4}}$ such that none of the roots of $P(x)$ are within $\frac{1}{10^{4}}$ of some point contained in I.

Now, for any root r of $P(x)$ and for any point $x \in I$, we claim that

$$
\left|\frac{x-r}{r}\right|>\frac{1}{10^{4}}
$$

Indeed, if $|r| \leq 1$, then since $|x-r|>\frac{1}{10^{4}}$, then indeed $|(x-r) / r|>1 / 10^{4}$. So, assume next that $|r|>1$; but then

$$
\left|\frac{x-r}{r}\right|=\left|1-\frac{x}{r}\right| \geq 1-\left|\frac{x}{r}\right|>1-\frac{1}{2}>\frac{1}{10^{4}},
$$

as claimed. So,

$$
\int_{-1}^{1}\left|\frac{P(x)}{P(0)}\right| \mathrm{dx} \geq \int_{I} \prod_{i}\left|\frac{x-r_{i}}{r_{i}}\right|>\int_{I}\left(\frac{1}{10^{4}}\right)^{2020} \mathrm{dx}=\frac{1}{10^{8084}}
$$

Problem 3. The sequence $\left\{a_{n}\right\}$ satisfies

$$
\begin{gathered}
a_{1}=1 ; a_{2}=2 ; a_{3}=24 \text { and for } n \geq 4: \\
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}
\end{gathered}
$$

Prove that for each positive integer n, we have that a_{n} is an integer multiple of n.
Solution. We let $b_{n}:=a_{n} / a_{n-1}$ for each $n \geq 2$ and so, for all $n \geq 4$, we have:

$$
\begin{gathered}
b_{n}=6 b_{n-1}-8 b_{n-2}, \text { where } \\
\quad b_{2}=2 \text { and } b_{3}=12 .
\end{gathered}
$$

We solve first for the sequence $\left\{b_{n}\right\}$ whose characteristic roots are 2 and 4 and a simple computation yields that for all $n \geq 2$, we have:

$$
b_{n}=-2^{n-1}+4^{n-1}
$$

So, using that $a_{1}=1$, we conclude that

$$
a_{n}=\prod_{i=1}^{n-1}\left(4^{i}-2^{i}\right)
$$

Now, for each positive integer n, we write it as $n=2^{a} \cdot b$, where $a \geq 0$ and b is an odd integer. We have that, after denoting by $\phi(m)$ the Euler-totient function corresponding to each integer m,

$$
4^{a \cdot \phi(b)}-2^{a \cdot \phi(b)} \equiv 0 \quad(\bmod n)
$$

Indeed, clearly, the above expression is divisible by 2^{a}, so we're left to prove that it must also be divisible by b. However,

$$
4^{a \phi(b)}-2^{a \phi(b)}=2^{a \phi(b)} \cdot\left(2^{a \phi(b)}-1\right) \equiv 0 \quad(\bmod b)
$$

using Euler's theorem because $2^{\phi(b)} \equiv 1(\bmod b)\left(\right.$ and then $2^{m \phi(b)} \equiv 1(\bmod b)$ for any positive integer m). Finally, we observe that

$$
a \cdot \phi(b)<n=2^{a} \cdot b,
$$

because $\phi(b) \leq b$ and $a<2^{a}$ for any $b \geq 1$ and any $a \geq 0$.
Problem 4. Let $P \in \mathbb{C}[x]$ be a polynomial of degree n such that $P(x)=Q(x)$. $P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}$ is the double derivative of
P. Show that if $P(x)$ has at least two distinct roots, then it must have n distinct roots.

Solution. Assume r is a root of $P(x)$ of multiplicity $m \geq 2$. Then $P^{\prime \prime}(x)$ has the root r with multiplicity $m-2$; therefore, $Q(x)$ must have the root r with multiplicity 2. Furthermore, looking the leading coefficients of both $P(x)$ and of $P^{\prime \prime}(x)$, we conclude that $Q(x)=\frac{1}{n(n-1)} \cdot(x-r)^{2}$. Now, we write

$$
P(x)=\sum_{i=0}^{n} c_{i}(x-r)^{i} ;
$$

actually, from our assumption, we know that $a_{i}=0$ for $0 \leq i<m$ (where $m \geq 2$). Then

$$
P^{\prime \prime}(x)=\sum_{i=m}^{n} i(i-1) c_{i}(x-r)^{i-2}
$$

and then equating $P(x)=\frac{(x-r)^{2}}{n(n-1)} \cdot P^{\prime \prime}(x)$ (in their expansions around $x=r$), we get that c_{i} must be equal to 0 whenever $i<n$, which contradicts the assumption that $P(x)$ has at least two distinct roots. This concludes our proof.

