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PROF. DRAGOS GHIOCA

Problem 1. Prove that for each positive integer n, we have

2n—1 n 2n+1

<2n61> 2 <H(21'1)<<2n:1) ;,

=1

where e is base of the natural logarithm.

Solution. Using the fact that In(z) is an increasing function, we have that the
right rectangles of width 2 represent an overestimate of the area under the graph
of In(z), while the left rectangles of same width represent an underestimate of that
area; so,

2n—1 2n+1
/ In(z)dx <2-(In(3) +---+In(2n —1)) < / In(x)dx.
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We have that [In(z)dx = zIn(z) — 2 + C and therefore

2n—1
(Cn—1)In(2n—1)— (2n—1))+1 < 2In ( H ) <((2n+1)In2n+1) — (2n+1))—(31n(3)—3)
i=1
and then (after exponentiating)
2 1 Il 2 1
(2n—1)"7 e "t < H < (2n+ 1)%6_"“3_%.
i=1

Finally, using in the first inequality that e > 1, while in the second inequality we
use that 3 > e, we derive the desired conclusion.

Problem 2. For any square matrix A with real entries, we can define

(oo}
) (_1)nA2n+1
sin(A) := —_
(4) Z (2n+1)!
n=0
i.e., the above series converges. Determine with proof whether there exists some
matrix A with real entries such that

sin(A) — ( é 20119 )

Solution. Assume there exists such a matrix A; then there are two cases:
Case 1. A is diagonalizable, i.e., there exists a diagonal matrix D and some
invertible matrix B such that A = B~'DB.
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Then for each positive integer k, we have A¥ = B~'D*B. This allows us also
very quickly to check that the series defining sin(A) indeed converges because the
series

i (71)n>\2n+1
|
= (2n+1)!

converges for any complex number A. Furthermore, letting sin(A) be the above
expression represented for the series corresponding to A (if A is a real number,
then we recover the usual sine function, while if A is a complex number, then
sin(A\) = (e** —e~%)/2i). The important thing to note is that in this case we would
get also that sin(A) is a diagonalizable matrix (more precisely, Bsin(A)B~! is a
diagonal matrix), which is a contradiction.

Case 2. A is not diagonalizable; so, there exists an invertible matrix B such

that A = B~'JB, where
Al
J—(O ! )

Furthermore, in this case, the unique eigenvalue A of A must be a real number.
Then
AP ARl
k _

Now, sin(A4) = B~ sin(J)B and so, A and J must have the same eigenvalues, which
in this case is 1. However, the only eigenvalue of sin(J) is sin()), so sin(\) = 1,
which means that A = 5 + 2{7 for some integer £. Now, we compute the only other
nonzero entry (not on the diagonal) in sin(.J); we obtain

— (—DFRE+1)- A2 SN (1R
(2k + 1)! N (2k)!

= cos(A\) =0,
k=0 k=0

because A = § + 2{m. In conclusion, there exists no such matrix A.

Problem 3. Let P € R[z] with the property that P(x) > 0 for all x € R. Prove
that there exist polynomials Q1,Q2 € R[x] such that P(z) = Q1(z)? + Q2(z)%.

Solution. Our hypothesis yields that each real root of P(z) must have even
multiplicity (otherwise there exists a change in sign of P(z) near that root). So,
there exist polynomials Qg € R[x] and C(z) € R[] such that P(x) = Qo(z)?-C(z),
where no root of C(x) is real. So, C(x) is a product of quadratic polynomials of
the form

(z—a—B-)(z—a+hi)=(@—a)?+5
for real numbers « and 5. Finally, using the identity

(S2+T?)(U? +V?) = (SUHTV)? + (SV —TU)?

we obtain the desired conclusion.

Problem 4. Let a,, be real numbers so that the following power series expansion
holds:

1 oo
1— 2z —22 Zanx".
n=0
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Prove that for each integer n > 0, there exists a positive integer m such that
2 2 _
Upy1 T 05 = Q.
Solution. We have 1 — 2z — 2% = (1 — (1+ v2)z) - (1 — (1 — v2)z) and so,
1

1 -2z —22
1

T -1+ VD) - (1-V2)e)
1 1+v2 142
2v2 \1-(1+v2)z 1-(1—2)z

= . (i(l +V2)n g i(l - \/5)"“&0”) .

2 n=0 n=0

Thus a, = 555 - ((1+v2)"*! — (1 = v2)"*1). We compute

N

S

2 2
an+1 + Ay,

((1 + f)2n+2 (1 \/§)2n+2 _ 2( )n—i—l (1 + f)Qn ( _ \/§)2n _ 2(_1)n>
((1 V2P (A 2v2) + (1= VD) (4 2V2))
(V2P VR + (- VR (V2 1))

oo\»—‘ooM—*

2\[
= A2n+1,

as desired.



