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PROF. DRAGOS GHIOCA

Problem 1. Prove that for each positive integer n, we have(
2n− 1

e

) 2n−1
2

<

n∏
i=1

(2i− 1) <

(
2n+ 1

e

) 2n+1
2

,

where e is base of the natural logarithm.

Solution. Using the fact that ln(x) is an increasing function, we have that the
right rectangles of width 2 represent an overestimate of the area under the graph
of ln(x), while the left rectangles of same width represent an underestimate of that
area; so, ∫ 2n−1

1

ln(x)dx < 2 · (ln(3) + · · ·+ ln(2n− 1)) <

∫ 2n+1

3

ln(x)dx.

We have that
∫

ln(x)dx = x ln(x)− x+ C and therefore

((2n− 1) ln(2n− 1)− (2n− 1))+1 < 2 ln

(
2n−1∏
i=1

)
< ((2n+ 1) ln(2n+ 1)− (2n+ 1))−(3 ln(3)−3)

and then (after exponentiating)

(2n− 1)
2n−1

2 e−n+1 <

2n−1∏
i=1

< (2n+ 1)
2n+1

2 e−n+13−
3
2 .

Finally, using in the first inequality that e > 1, while in the second inequality we
use that 3 > e, we derive the desired conclusion.

Problem 2. For any square matrix A with real entries, we can define

sin(A) :=

∞∑
n=0

(−1)nA2n+1

(2n+ 1)!
,

i.e., the above series converges. Determine with proof whether there exists some
matrix A with real entries such that

sin(A) =

(
1 2019
0 1

)
.

Solution. Assume there exists such a matrix A; then there are two cases:
Case 1. A is diagonalizable, i.e., there exists a diagonal matrix D and some

invertible matrix B such that A = B−1DB.
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Then for each positive integer k, we have Ak = B−1DkB. This allows us also
very quickly to check that the series defining sin(A) indeed converges because the
series

∞∑
n=0

(−1)nλ2n+1

(2n+ 1)!

converges for any complex number λ. Furthermore, letting sin(λ) be the above
expression represented for the series corresponding to λ (if λ is a real number,
then we recover the usual sine function, while if λ is a complex number, then
sin(λ) = (eiλ−e−iλ)/2i). The important thing to note is that in this case we would
get also that sin(A) is a diagonalizable matrix (more precisely, B sin(A)B−1 is a
diagonal matrix), which is a contradiction.

Case 2. A is not diagonalizable; so, there exists an invertible matrix B such
that A = B−1JB, where

J =

(
λ 1
0 λ

)
.

Furthermore, in this case, the unique eigenvalue λ of A must be a real number.
Then

Jk =

(
λk kλk−1

0 λk

)
.

Now, sin(A) = B−1 sin(J)B and so, A and J must have the same eigenvalues, which
in this case is 1. However, the only eigenvalue of sin(J) is sin(λ), so sin(λ) = 1,
which means that λ = π

2 + 2`π for some integer `. Now, we compute the only other
nonzero entry (not on the diagonal) in sin(J); we obtain

∞∑
k=0

(−1)k(2k + 1) · λ2k

(2k + 1)!
=

∞∑
k=0

(−1)kλ2k

(2k)!
= cos(λ) = 0,

because λ = π
2 + 2`π. In conclusion, there exists no such matrix A.

Problem 3. Let P ∈ R[x] with the property that P (x) ≥ 0 for all x ∈ R. Prove
that there exist polynomials Q1, Q2 ∈ R[x] such that P (x) = Q1(x)2 +Q2(x)2.

Solution. Our hypothesis yields that each real root of P (x) must have even
multiplicity (otherwise there exists a change in sign of P (x) near that root). So,
there exist polynomials Q0 ∈ R[x] and C(x) ∈ R[x] such that P (x) = Q0(x)2 ·C(x),
where no root of C(x) is real. So, C(x) is a product of quadratic polynomials of
the form

(x− α− β · i)(x− α+ β · i) = (x− α)2 + β2

for real numbers α and β. Finally, using the identity

(S2 + T 2)(U2 + V 2) = (SU + TV )2 + (SV − TU)2

we obtain the desired conclusion.

Problem 4. Let an be real numbers so that the following power series expansion
holds:

1

1− 2x− x2
=

∞∑
n=0

anx
n.
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Prove that for each integer n ≥ 0, there exists a positive integer m such that
a2n+1 + a2n = am.

Solution. We have 1− 2x− x2 =
(
1− (1 +

√
2)x
)
·
(
1− (1−

√
2)x
)

and so,

1

1− 2x− x2

=
1

(1− (1 +
√

2)x)(1− (1−
√

2)x)

=
1

2
√

2
·

(
1 +
√

2

1− (1 +
√

2)x
− 1−

√
2

1− (1−
√

2)x

)

=
1

2
√

2
·

( ∞∑
n=0

(1 +
√

2)n+1xn −
∞∑
n=0

(1−
√

2)n+1xn

)
.

Thus an = 1
2
√
2
·
(
(1 +

√
2)n+1 − (1−

√
2)n+1

)
. We compute

a2n+1 + a2n

=
1

8
·
(

(1 +
√

2)2n+2 + (1−
√

2)2n+2 − 2(−1)n+1 + (1 +
√

2)2n + (1−
√

2)2n − 2(−1)n
)

=
1

8
·
(

(1 +
√

2)2n · (4 + 2
√

2) + (1−
√

2)2n · (4− 2
√

2)
)

=
1

2
√

2
·
(

(1 +
√

2)2n · (1 +
√

2) + (1−
√

2)2n · (
√

2− 1)
)

= a2n+1,

as desired.


