PUTNAM PRACTICE SET 1

PROF. DRAGOS GHIOCA

Problem 1. Find the maximum and the minimum possible value of the product $x_{1} \cdot x_{2} \cdots x_{n}$, where the real numbers x_{i} satisfy the following properties:

- $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$; and
- $x_{i} \geq \frac{1}{n}$ for each $i=1, \ldots, n$.

Solution. We use the inequality between the Arithmetic Mean and the Geometric Mean and therefore, conclude that

$$
\sqrt[n]{x_{1}^{2} \cdot x_{2}^{2} \cdots x_{n}^{2}} \leq \frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n}=\frac{1}{n}
$$

with equality if and only if $x_{1}^{2}=x_{2}^{2}=\cdots=x_{n}^{2}=\frac{1}{n}$. So, the maximum of $\prod_{i=1}^{n} x_{i}$ is $\frac{1}{n^{\frac{n}{2}}}$ and it is attained when $x_{1}=x_{2}=\cdots=x_{n}=\frac{1}{\sqrt{n}}$ (which is allowed since $\frac{1}{\sqrt{n}}>\frac{1}{n}$).

Now, in order to determine the minimum of $\prod_{i=1}^{n} x_{i}$ we use the following easy claim.

Claim 0.1. Let u, v, u_{1}, v_{1} be positive real numbers such that

- $u+v=u_{1}+v_{1}$; and
- $\min \{u, v\} \geq u_{1}$.

Then $u v \geq u_{1} v_{1}$.
Proof of Claim 0.1. Using the above hypothesis, we have that $v_{1} \geq u_{1}$; also, without loss of generality, we may assume $v \geq u$. Then (because $u_{1} \leq u \leq v \leq v_{1}$) we have

$$
v_{1}-u_{1} \geq v-u
$$

and so, $4 u_{1} v_{1}=\left(u_{1}+v_{1}\right)^{2}-\left(v_{1}-u_{1}\right)^{2} \leq(u+v)^{2}-(v-u)^{2}=4 u v$, thus proving the desired claim.

So, when we minimize $\prod_{i=1}^{n} x_{i}^{2}$ with $x_{n}=\max _{i=1}^{n} x_{i}$, then for any $i=1, \ldots, n-1$, we may replace x_{1} by $x_{1}^{\prime}:=\frac{1}{n}$ and then replace x_{n} by $x_{n}^{\prime}:=\sqrt{x_{1}^{2}+x_{n}^{2}-\frac{1}{n^{2}}}$-this will only decrease the above product. So, the minimum of $\prod_{i=1}^{n} x_{i}$ is obtained for

$$
x_{1}=x_{2}=\cdots=x_{n-1}=\frac{1}{n} \text { and } x_{n}=\sqrt{\frac{n^{2}-n+1}{n^{2}}}
$$

and so, $\min \prod_{i=1}^{n} x_{i}=\frac{\sqrt{n^{2}-n+1}}{n^{n}}$.

Problem 2. We let $f:[0,1) \longrightarrow[0,1)$ be defined by the properties:

$$
\left\{\begin{array}{clc}
f(x)=\frac{f(2 x)}{4} & \text { if } & 0 \leq x<\frac{1}{2} \\
f(x)=\frac{3+f(2 x-1)}{4} & \text { if } & \frac{1}{2} \leq x<1
\end{array}\right.
$$

Find $f(x)$ for each $x \in[0,1)$; you may express your answer in terms of the expansion of x in base 2 .

Solution. We write $x=0 . b_{1} b_{2} \cdots b_{n} \cdots$ in base 2, i.e., $b_{n} \in\{0,1\}$ for all $n \geq 1$. Also, we use the convention that we write

$$
0 . b_{1} \cdots b_{m} 100 \cdots 0 \cdots
$$

and not $0 . b_{1} \cdots b_{m} 011 \cdots 1 \cdots$. Then our definition for $f(x)$ yields the following:

- if $b_{1}=0$ then $f(x)=\frac{f\left(0 . b_{2} b_{3} \cdots b_{n} \cdots\right)}{4}$, while
- if $b_{1}=1$ then $f(x)=\frac{3+f\left(0 . b_{2} b_{3} \cdots b_{n} \cdots\right)}{4}$.

In both cases, we get

$$
f(x)=\frac{b_{1}}{2}+\frac{b_{1}}{4}+\frac{f\left(0 . b_{2} b_{3} \cdots b_{n} \cdots\right)}{4}
$$

and then inductively, we obtain

$$
f(x)=\frac{b_{1}}{2}+\frac{b_{1}}{4}+\frac{b_{2}}{8}+\frac{b_{2}}{16}+\frac{f\left(0 . b_{3} b_{4} \cdots b_{n} \cdots\right)}{16}
$$

and furthermore, for any $m \geq 1$, we have

$$
f(x)=0 . b_{1} b_{1} b_{2} b_{2} \cdots b_{m-1} b_{m-1} b_{m} b_{m}+\frac{f\left(0 . b_{m+1} b_{m+2} \cdots\right)}{4^{m}} .
$$

Now, since $f(z)<1$ for each z, then

$$
\frac{f\left(0 . b_{m+1} b_{m+2} \cdots\right)}{4^{m}} \rightarrow 0 \text { as } m \rightarrow \infty
$$

and so, we conclude that

$$
f\left(0 . b_{1} b_{2} \cdots b_{n} \cdots\right)=0 . b_{1} b_{1} b_{2} b_{2} \cdots b_{n} b_{n} \cdots
$$

Problem 3. Find all real numbers a for which there exist nonnegative real numbers x_{1}, \ldots, x_{5} satisfying the following property:

$$
\sum_{k=1}^{5} k^{2 i-1} \cdot x_{k}=a^{i} \text { for each } i=1,2,3
$$

Solution. The given relations yield

$$
\sum_{k=1}^{5}\left(a k-k^{3}\right) \cdot x_{k}=0 \text { and } \sum_{k=1}^{5}\left(a k^{3}-k^{5}\right) x_{k}=0
$$

So,

$$
\sum_{\substack{1 \leq k \leq 5 \\ k^{2} \leq a}}\left(a-k^{2}\right) k x_{k}=\sum_{\substack{1 \leq k \leq 5 \\ a<k^{2}}}\left(k^{2}-a\right) k x_{k}
$$

and

$$
\sum_{\substack{1 \leq k \leq 5 \\ k^{2} \leq a}}\left(a-k^{2}\right) k^{3} x_{k}=\sum_{\substack{1 \leq k \leq 5 \\ a<k^{2}}}\left(k^{2}-a\right) k^{3} x_{k} .
$$

However,

$$
\begin{aligned}
& \sum_{\substack{1 \leq k \leq 5 \\
k^{2} \leq a}}\left(a-k^{2}\right) k^{3} x_{k} \\
& \leq \sum_{\substack{1 \leq k \leq 5 \\
k^{2} \leq a}}\left(a-k^{2}\right) \cdot a \cdot k x_{k} \\
&= \sum_{\substack{1 \leq k \leq 5 \\
a<k^{2}}}\left(k^{2}-a\right) k x_{k} \cdot a \\
& \leq \sum_{\substack{1 \leq k \leq 5 \\
a<k^{2}}}\left(k^{2}-a\right) k^{3} x_{k}
\end{aligned}
$$

and since the first and the last of these sums are equal, then it must be that both inequalities above are actually equalities. Now, if $a \notin\left\{1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}\right\}$ then the above inequalities cannot become equalities (since not all of the x_{k} can be equal to zero). On the other hand, for each $m \in\{1, \ldots, 5\}$, if $a=m^{2}$ then letting $x_{k}=0$ if $k \neq m$ while $x_{m}=m$, then all of the hypotheses are met.

Problem 4. Let $m \in \mathbb{N}$ and let $a_{1}, \ldots, a_{m} \in \mathbb{N}$. Prove that there exists a positive integer $n<2^{m}$ and there exist positive integers b_{1}, \ldots, b_{n} satisfying the following properties:
(i) for any two distinct subsets $I, J \subseteq\{1, \ldots, n\}$, we have that $\sum_{k \in I} b_{k} \neq$ $\sum_{\ell \in J} b_{\ell} ;$ and
(ii) for each $i=1, \ldots, m$, there exists a subset $J_{i} \subseteq\{1, \ldots, n\}$ such that $a_{i}=$ $\sum_{k \in J_{i}} b_{k}$.

Solution. We write for each $i=1, \ldots, m$:

$$
a_{i}=\sum_{j \in M_{i}} 2^{j},
$$

where M_{i} is the set of nonnegative integers corresponding to the positions in the writing of a_{i} in base 2 where the digit of a_{i} equals 1 . Writing similarly each b_{i} (for $1 \leq i \leq n)$

$$
b_{i}=\sum_{j \in A_{i}} 2^{j}
$$

then the above conditions (i)-(ii) are satisfied if the following conditions are met:
(i') $A_{i} \cap A_{j}=\emptyset$ if $1 \leq i<j \leq n$; and
(ii') for each $i=1, \ldots, m$, there exists $J \subset\{1, \ldots, n\}$ such that $M_{i}=\cup_{j \in J} A_{j}$.
Furthermore, we need $n \leq 2^{m}-1$.
Now, we prove the existence of such sets $\left\{A_{j}\right\}_{1 \leq j \leq n}$ corresponding to given sets $\left\{M_{i}\right\}_{1 \leq i \leq m}$ (with $n \leq 2^{m}-1$). We argue by induction on m; the case $m=1$ is immediate since we may take $n=1<2^{1}$ and $A_{1}:=M_{1}$.

Next, we assume we constructed A_{1}, \ldots, A_{n} (with $n \leq 2^{m}-1$) corresponding to the sets M_{1}, \ldots, M_{m} and given a new set M_{m+1}, we construct the following
sets (note that if one of these sets A_{i}^{\prime} is empty, then we could simply disregard the corresponding a_{i}^{\prime}):

$$
\begin{gathered}
A_{2 n+1}^{\prime}:=M_{m+1} \backslash\left(\bigcup_{i=1}^{n} A_{i}\right) \\
A_{2 i}^{\prime}:=M_{m+1} \cap A_{i} \text { for } 1 \leq i \leq n \text { and } \\
A_{2 i-1}^{\prime}:=A_{i} \backslash M_{m+1} \text { for } 1 \leq i \leq n .
\end{gathered}
$$

Since $A_{i}=A_{2 i}^{\prime} \cup A_{2 i-1}^{\prime}$ for $1 \leq i \leq n$, then each $M_{j}($ for $1 \leq j \leq m)$ can be written as a union of the sets A_{i}^{\prime} (for $\left.1 \leq i \leq 2 n\right)$. Also, since $A_{i} \cap A_{j}=\emptyset$ if $1 \leq i<j \leq n$, then $A_{i}^{\prime} \cap A_{j}^{\prime}=\emptyset$ if $1 \leq i<j \leq 2 n$. Furthermore,

$$
M_{m+1}=\bigcup_{i=1}^{2 n+1} A_{i}^{\prime}
$$

and also, $A_{2 n+1}^{\prime}$ is disjoint from each A_{i}^{\prime} for $1 \leq i \leq 2 n$. So, the hypotheses are met for the sets A_{i}^{\prime} for $1 \leq i \leq 2 n+1$ and clearly,

$$
2 n+1 \leq 2\left(2^{m}-1\right)+1=2^{m+1}-1
$$

