
PUTNAM PRACTICE SET 1

PROF. DRAGOS GHIOCA

Problem 1. Find the maximum and the minimum possible value of the product
x1 · x2 · · ·xn, where the real numbers xi satisfy the following properties:

• x2
1 + x2

2 + · · ·+ x2
n = 1; and

• xi ≥ 1
n for each i = 1, . . . , n.

Solution. We use the inequality between the Arithmetic Mean and the Geometric
Mean and therefore, conclude that

n

√
x2
1 · x2

2 · · ·x2
n ≤

x2
1 + x2

2 + · · ·+ x2
n

n
=

1

n

with equality if and only if x2
1 = x2

2 = · · · = x2
n = 1

n . So, the maximum of
∏n

i=1 xi

is 1

n
n
2

and it is attained when x1 = x2 = · · · = xn = 1√
n

(which is allowed since
1√
n
> 1

n ).

Now, in order to determine the minimum of
∏n

i=1 xi we use the following easy
claim.

Claim 0.1. Let u, v, u1, v1 be positive real numbers such that

• u + v = u1 + v1; and
• min{u, v} ≥ u1.

Then uv ≥ u1v1.

Proof of Claim 0.1. Using the above hypothesis, we have that v1 ≥ u1; also, with-
out loss of generality, we may assume v ≥ u. Then (because u1 ≤ u ≤ v ≤ v1) we
have

v1 − u1 ≥ v − u

and so, 4u1v1 = (u1 + v1)2 − (v1 − u1)2 ≤ (u + v)2 − (v − u)2 = 4uv, thus proving
the desired claim. �

So, when we minimize
∏n

i=1 x
2
i with xn = maxn

i=1 xi, then for any i = 1, . . . , n−1,

we may replace x1 by x′1 := 1
n and then replace xn by x′n :=

√
x2
1 + x2

n − 1
n2 —this

will only decrease the above product. So, the minimum of
∏n

i=1 xi is obtained for

x1 = x2 = · · · = xn−1 =
1

n
and xn =

√
n2 − n + 1

n2

and so, min
∏n

i=1 xi =
√
n2−n+1
nn .

Problem 2. We let f : [0, 1) −→ [0, 1) be defined by the properties:{
f(x) = f(2x)

4 if 0 ≤ x < 1
2

f(x) = 3+f(2x−1)
4 if 1

2 ≤ x < 1
.
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Find f(x) for each x ∈ [0, 1); you may express your answer in terms of the expansion
of x in base 2.

Solution. We write x = 0.b1b2 · · · bn · · · in base 2, i.e., bn ∈ {0, 1} for all n ≥ 1.
Also, we use the convention that we write

0.b1 · · · bm100 · · · 0 · · ·

and not 0.b1 · · · bm011 · · · 1 · · · . Then our definition for f(x) yields the following:

• if b1 = 0 then f(x) = f(0.b2b3···bn··· )
4 , while

• if b1 = 1 then f(x) = 3+f(0.b2b3···bn··· )
4 .

In both cases, we get

f(x) =
b1
2

+
b1
4

+
f(0.b2b3 · · · bn · · · )

4

and then inductively, we obtain

f(x) =
b1
2

+
b1
4

+
b2
8

+
b2
16

+
f(0.b3b4 · · · bn · · · )

16

and furthermore, for any m ≥ 1, we have

f(x) = 0.b1b1b2b2 · · · bm−1bm−1bmbm +
f(0.bm+1bm+2 · · · )

4m
.

Now, since f(z) < 1 for each z, then

f(0.bm+1bm+2 · · · )
4m

→ 0 as m→∞

and so, we conclude that

f(0.b1b2 · · · bn · · · ) = 0.b1b1b2b2 · · · bnbn · · ·

Problem 3. Find all real numbers a for which there exist nonnegative real num-
bers x1, . . . , x5 satisfying the following property:

5∑
k=1

k2i−1 · xk = ai for each i = 1, 2, 3.

Solution. The given relations yield

5∑
k=1

(ak − k3) · xk = 0 and

5∑
k=1

(ak3 − k5)xk = 0.

So, ∑
1≤k≤5
k2≤a

(a− k2)kxk =
∑

1≤k≤5
a<k2

(k2 − a)kxk

and ∑
1≤k≤5
k2≤a

(a− k2)k3xk =
∑

1≤k≤5
a<k2

(k2 − a)k3xk.
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However, ∑
1≤k≤5
k2≤a

(a− k2)k3xk

≤
∑

1≤k≤5
k2≤a

(a− k2) · a · kxk

=
∑

1≤k≤5
a<k2

(k2 − a)kxk · a

≤
∑

1≤k≤5
a<k2

(k2 − a)k3xk

and since the first and the last of these sums are equal, then it must be that both
inequalities above are actually equalities. Now, if a /∈ {12, 22, 32, 42, 52} then the
above inequalities cannot become equalities (since not all of the xk can be equal to
zero). On the other hand, for each m ∈ {1, . . . , 5}, if a = m2 then letting xk = 0 if
k 6= m while xm = m, then all of the hypotheses are met.

Problem 4. Let m ∈ N and let a1, . . . , am ∈ N. Prove that there exists a positive
integer n < 2m and there exist positive integers b1, . . . , bn satisfying the following
properties:

(i) for any two distinct subsets I, J ⊆ {1, . . . , n}, we have that
∑

k∈I bk 6=∑
`∈J b`; and

(ii) for each i = 1, . . . ,m, there exists a subset Ji ⊆ {1, . . . , n} such that ai =∑
k∈Ji

bk.

Solution. We write for each i = 1, . . . ,m:

ai =
∑
j∈Mi

2j ,

where Mi is the set of nonnegative integers corresponding to the positions in the
writing of ai in base 2 where the digit of ai equals 1. Writing similarly each bi (for
1 ≤ i ≤ n)

bi =
∑
j∈Ai

2j ,

then the above conditions (i)-(ii) are satisfied if the following conditions are met:

(i’) Ai ∩Aj = ∅ if 1 ≤ i < j ≤ n; and
(ii’) for each i = 1, . . . ,m, there exists J ⊂ {1, . . . , n} such that Mi = ∪j∈JAj .

Furthermore, we need n ≤ 2m − 1.
Now, we prove the existence of such sets {Aj}1≤j≤n corresponding to given sets

{Mi}1≤i≤m (with n ≤ 2m − 1). We argue by induction on m; the case m = 1 is
immediate since we may take n = 1 < 21 and A1 := M1.

Next, we assume we constructed A1, . . . , An (with n ≤ 2m − 1) corresponding
to the sets M1, . . . ,Mm and given a new set Mm+1, we construct the following



4 PROF. DRAGOS GHIOCA

sets (note that if one of these sets A′i is empty, then we could simply disregard the
corresponding a′i):

A′2n+1 := Mm+1 \

(
n⋃

i=1

Ai

)
A′2i := Mm+1 ∩Ai for 1 ≤ i ≤ n and

A′2i−1 := Ai \Mm+1 for 1 ≤ i ≤ n.

Since Ai = A′2i ∪A′2i−1 for 1 ≤ i ≤ n, then each Mj (for 1 ≤ j ≤ m) can be written
as a union of the sets A′i (for 1 ≤ i ≤ 2n). Also, since Ai ∩Aj = ∅ if 1 ≤ i < j ≤ n,
then A′i ∩A′j = ∅ if 1 ≤ i < j ≤ 2n. Furthermore,

Mm+1 =

2n+1⋃
i=1

A′i

and also, A′2n+1 is disjoint from each A′i for 1 ≤ i ≤ 2n. So, the hypotheses are met
for the sets A′i for 1 ≤ i ≤ 2n + 1 and clearly,

2n + 1 ≤ 2(2m − 1) + 1 = 2m+1 − 1.


