
PUTNAM PRACTICE SET 33: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. For which positive integers n is there an n-by-n matrix A with integer
entries with the property that every dot product of a row with itself is even, while
every dot product of two different rows is odd?

Solution. We show that for each odd n ∈ N there exists such a matrix A, while
for even positive integers n there is no such n-by-n matrix.

First, we let Jn be the n-by-n matrix all of whose entries equal 1 and if n is odd,
we let A := Jn − In (where In is the identity n-by-n matrix). Then clearly, the
dot product of any row with itself equals n − 1, which is even, while for any two
distinct rows, their dot product equals n− 2, which is odd, as desired.

Now, if n is even and A were a matrix satisfying the conditions from our problem,
then we let Ā its reduction modulo 2, i.e., we reduce modulo 2 each entry in A and
so, Ā ∈Mn,n(F2).

Letting v̄ ∈ Mn,1(F2) be the vector all of whose entries equal 1, we see that
Ā · v̄ = Ōn,1 (the zero vector with n entries) because our hypothesis yields that the
sum of the entries in each row of A must be even; hence Ā is a singular matrix in
Mn,n(F2), i.e.,

(1) det(Ā) = 0 ∈ F2.

On the other hand, our hypothesis regarding A yields that

(2) Ā · Āt = J̄n − Īn,
where Īn and J̄n are the identity n-by-n matrix, respectively the n-by-n matrix
whose entries all equal 1, both matrices living in Mn,n(F2). A simple computation
(also employing that n is assumed to be even) yields that

(J̄n − Īn)2 = nJ̄n − 2J̄n + Īn = Īn,

thus showing that J̄n − Īn is invertible in Mn,n(F2) (when n is even). Therefore
(2) yields that Ā must also be invertible in Mn,n(F2), which contradicts (1). This
contradiction shows that only when n is odd, we can construct such a matrix A,
which concludes our proof.

Problem 2. Let a, b ∈ N. Prove that for each ε > 0, we can find positive integers
m and n with the property that

0 <
∣∣a√m− b√n∣∣ < ε.

Solution. Let k ∈ N. We take n = a2k2 and m = b2k2 + 1. Then clearly,
a
√
m > abk = b

√
n and moreover,

a
√
m−b

√
n =

√
a2b2k2 + a2−

√
a2b2k2 =

a2
√
a2b2k2 + a2 +

√
a2b2k2

<
a2

2abk
=

a

2bk

and so, choosing k > a
2bε delivers the desired conclusion.
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Problem 3. Let g : R −→ R be a continuous function with g(0) 6= 0. If f : R −→
R is a function with the property that both functions

f

g
and f · g

are differentiable at x = 0, then does this imply that also f must be differentiable
at x = 0?

Solution. Yes, it does; here’s why. First of all, we note that f is continuous at
x = 0 because g is continuous at x = 0 and also f/g is continuous at x = 0, thus
showing that their product g · (f/g) = f is continuous at x = 0.

Since f · g and f/g are both differentiable at x = 0, then their product f2 must

also be differentiable at x = 0. If f(0) 6= 0, then
√
f(x) is differentiable at x = 0

(as a composition of two differentiable functions at that point) and so, we get that
f or −f is differentiable at x = 0 (depending on the sign of f(0)); either way, we
get that f is differentiable at x = 0. Note that by the continuity of f at x = 0,
we knew that if f(0) 6= 0, then in a small neighborhod of x = 0, f(x) is
either positive or negative for all values of x in that small interval.

So, we’re left to analyzing the differentiablility of f at x = 0 assuming f(0) = 0,
i.e., we need to prove that the following limit exists:

lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

f(x)

x
.

However, we know that f/g is differentiable at x = 0 and since f(0) = 0 (and
g(0) 6= 0), then we know that the following limit exists:

lim
x→0

f(x)
g(x) −

f(0)
g(0)

x− 0
= lim
x→0

f(x)
g(x)

x
= lim
x→0

f(x)

xg(x)
.

So, because g(x) is continuous at x = 0, then indeed the following limit exists:

lim
x→0

f(x)

xg(x)
· lim
x→0

g(x) = lim
x→0

f(x)

x
,

as desired.

Problem 4. Let p be an odd prime number. Prove that there exist at least p+1
2

distinct integers n ∈ {0, 1, 2, . . . , p− 1} with the property that p doesn’t divide the
integer:

p−1∑
k=0

k! · nk.

(As always, we use the convention that 0! = 1.)

Solution. We are asked to show that the polynomial

f(x) =

p−1∑
k=0

k! · xk ∈ Fp[x]

has at most p−1
2 distinct roots in Fp. Clearly, f(x) doesn’t have the root x = 0; so,

it suffices to show that it doesn’t have more than p−1
2 distinct nonzero roots in Fp.

Now, it suffices to prove that the polynomial

f1(x) =
f(x)

(p− 1)!
∈ Fp[x]
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has at most p−1
2 distinct nonzero roots in Fp. Now, due to Wilson’s Theorem, we

have that
(p− 1)! ≡ −1 (mod p)

and then for each k = 1, . . . , p− 2, we write

(p− 1)! = k! · (k + 1) · (k + 2) · · · (p− 1)

and so, for i = 1, . . . , p− k− 1, using that k+ i ≡ −(p− k− i) (mod p), we obtain
that

(p− 1)! ≡ k! · (−1)p−k−1 · (p− k − 1)! (mod p).

So, working in Fp[x], we have:

f1(x) =

p−1∑
k=0

k! · xk

(−1)p−k−1 · k! · (p− k − 1)!
=

p−1∑
k=0

xk

(−1)p−k−1(p− k − 1)!
.

Claim 0.1. Let h ∈ Fp[x] be a polynomial of degree p−1 for which h(0) 6= 0. Then
the number of distinct roots of h(x) = 0 in Fp is the same as the number of roots

in Fp of h̃(x) := xp−1 · h(1/x).

Proof of Claim 0.1. Indeed, both h(x) and h̃(x) are polynomials of degree p − 1;
neither one of them has the root 0, and moreover, for each α ∈ F∗p, we have that

h(α) = 0 if and only if h̃(1/α) = 0. This concludes our proof of Claim 0.1. �

Using Claim 0.1, then it suffices to prove that f̃1(x) := xp−1 · f1(1/x) ∈ Fp[x]

has at most p−1
2 distinct nonzero roots in Fp. We compute:

f̃1(x) =

p−1∑
k=0

xp−k−1

(−1)p−k−1(p− k − 1)!

and so, letting g(x) := f̃1(−x), it suffices to prove that g(x) has at most p−1
2 distinct

roots in Fp. We have that

g(x) =

p−1∑
k=0

xk

k!
∈ Fp[x].

Because for each α ∈ Fp, we have that αp−α = 0, then it suffices to show that the
number of nonzero distinct roots in Fp of

g1(x) = xp − x+ g(x) ∈ Fp[x]

is at most p−1
2 . Now, because (xp)′ = 0, we see that

g′1(x) = −1 + g′(x) = −1 +

p−2∑
k=0

xk

k!
= −1− xp−1

(p− 1)!
+ g(x) = −1 + xp−1 + g(x),

where in the last equality (in Fp[x]), we used the fact that (p − 1)! = −1 ∈ Fp.
So, for each nonzero root α ∈ Fp of g1(x), since αp = α and αp−1 = 1 in Fp, we
conclude that

g1(α) = g(α) = g′1(α) = 0.

Therefore, each nonzero root in Fp of g1(x) has multiplicity at least equal to 2, thus

proving that g1 (and so, in turn, g and then also f) has at most p−1
2 distinct roots

in Fp, as desired.


