PUTNAM PRACTICE SET 33: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. For which positive integers n is there an n-by- n matrix A with integer entries with the property that every dot product of a row with itself is even, while every dot product of two different rows is odd?

Solution. We show that for each odd $n \in \mathbb{N}$ there exists such a matrix A, while for even positive integers n there is no such n-by- n matrix.

First, we let J_{n} be the n-by- n matrix all of whose entries equal 1 and if n is odd, we let $A:=J_{n}-I_{n}$ (where I_{n} is the identity n-by- n matrix). Then clearly, the dot product of any row with itself equals $n-1$, which is even, while for any two distinct rows, their dot product equals $n-2$, which is odd, as desired.

Now, if n is even and A were a matrix satisfying the conditions from our problem, then we let \bar{A} its reduction modulo 2 , i.e., we reduce modulo 2 each entry in A and so, $\bar{A} \in M_{n, n}\left(\mathbb{F}_{2}\right)$.

Letting $\bar{v} \in M_{n, 1}\left(\mathbb{F}_{2}\right)$ be the vector all of whose entries equal 1 , we see that $\bar{A} \cdot \bar{v}=\bar{O}_{n, 1}$ (the zero vector with n entries) because our hypothesis yields that the sum of the entries in each row of A must be even; hence \bar{A} is a singular matrix in $M_{n, n}\left(\mathbb{F}_{2}\right)$, i.e.,

$$
\begin{equation*}
\operatorname{det}(\bar{A})=0 \in \mathbb{F}_{2} . \tag{1}
\end{equation*}
$$

On the other hand, our hypothesis regarding A yields that

$$
\begin{equation*}
\bar{A} \cdot \bar{A}^{t}=\bar{J}_{n}-\bar{I}_{n}, \tag{2}
\end{equation*}
$$

where \bar{I}_{n} and \bar{J}_{n} are the identity n-by- n matrix, respectively the n-by- n matrix whose entries all equal 1, both matrices living in $M_{n, n}\left(\mathbb{F}_{2}\right)$. A simple computation (also employing that n is assumed to be even) yields that

$$
\left(\bar{J}_{n}-\bar{I}_{n}\right)^{2}=n \bar{J}_{n}-2 \bar{J}_{n}+\bar{I}_{n}=\bar{I}_{n},
$$

thus showing that $\bar{J}_{n}-\bar{I}_{n}$ is invertible in $M_{n, n}\left(\mathbb{F}_{2}\right)$ (when n is even). Therefore (2) yields that \bar{A} must also be invertible in $M_{n, n}\left(\mathbb{F}_{2}\right)$, which contradicts (1). This contradiction shows that only when n is odd, we can construct such a matrix A, which concludes our proof.

Problem 2. Let $a, b \in \mathbb{N}$. Prove that for each $\epsilon>0$, we can find positive integers m and n with the property that

$$
0<|a \sqrt{m}-b \sqrt{n}|<\epsilon .
$$

Solution. Let $k \in \mathbb{N}$. We take $n=a^{2} k^{2}$ and $m=b^{2} k^{2}+1$. Then clearly, $a \sqrt{m}>a b k=b \sqrt{n}$ and moreover,
$a \sqrt{m}-b \sqrt{n}=\sqrt{a^{2} b^{2} k^{2}+a^{2}}-\sqrt{a^{2} b^{2} k^{2}}=\frac{a^{2}}{\sqrt{a^{2} b^{2} k^{2}+a^{2}}+\sqrt{a^{2} b^{2} k^{2}}}<\frac{a^{2}}{2 a b k}=\frac{a}{2 b k}$ and so, choosing $k>\frac{a}{2 b \epsilon}$ delivers the desired conclusion.

Problem 3. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function with $g(0) \neq 0$. If $f: \mathbb{R} \longrightarrow$ \mathbb{R} is a function with the property that both functions

$$
\frac{f}{g} \text { and } f \cdot g
$$

are differentiable at $x=0$, then does this imply that also f must be differentiable at $x=0$?

Solution. Yes, it does; here's why. First of all, we note that f is continuous at $x=0$ because g is continuous at $x=0$ and also f / g is continuous at $x=0$, thus showing that their product $g \cdot(f / g)=f$ is continuous at $x=0$.

Since $f \cdot g$ and f / g are both differentiable at $x=0$, then their product f^{2} must also be differentiable at $x=0$. If $f(0) \neq 0$, then $\sqrt{f(x)}$ is differentiable at $x=0$ (as a composition of two differentiable functions at that point) and so, we get that f or $-f$ is differentiable at $x=0$ (depending on the sign of $f(0)$); either way, we get that f is differentiable at $x=0$. Note that by the continuity of f at $x=0$, we knew that if $f(0) \neq 0$, then in a small neighborhod of $x=0, f(x)$ is either positive or negative for all values of x in that small interval.

So, we're left to analyzing the differentiablility of f at $x=0$ assuming $f(0)=0$, i.e., we need to prove that the following limit exists:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x} .
$$

However, we know that f / g is differentiable at $x=0$ and since $f(0)=0$ (and $g(0) \neq 0)$, then we know that the following limit exists:

$$
\lim _{x \rightarrow 0} \frac{\frac{f(x)}{g(x)}-\frac{f(0)}{g(0)}}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{f(x)}{g(x)}}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x g(x)}
$$

So, because $g(x)$ is continuous at $x=0$, then indeed the following limit exists:

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x g(x)} \cdot \lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

as desired.
Problem 4. Let p be an odd prime number. Prove that there exist at least $\frac{p+1}{2}$ distinct integers $n \in\{0,1,2, \ldots, p-1\}$ with the property that p doesn't divide the integer:

$$
\sum_{k=0}^{p-1} k!\cdot n^{k}
$$

(As always, we use the convention that $0!=1$.)
Solution. We are asked to show that the polynomial

$$
f(x)=\sum_{k=0}^{p-1} k!\cdot x^{k} \in \mathbb{F}_{p}[x]
$$

has at most $\frac{p-1}{2}$ distinct roots in \mathbb{F}_{p}. Clearly, $f(x)$ doesn't have the root $x=0$; so, it suffices to show that it doesn't have more than $\frac{p-1}{2}$ distinct nonzero roots in \mathbb{F}_{p}.

Now, it suffices to prove that the polynomial

$$
f_{1}(x)=\frac{f(x)}{(p-1)!} \in \mathbb{F}_{p}[x]
$$

has at most $\frac{p-1}{2}$ distinct nonzero roots in \mathbb{F}_{p}. Now, due to Wilson's Theorem, we have that

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

and then for each $k=1, \ldots, p-2$, we write

$$
(p-1)!=k!\cdot(k+1) \cdot(k+2) \cdots(p-1)
$$

and so, for $i=1, \ldots, p-k-1$, using that $k+i \equiv-(p-k-i)(\bmod p)$, we obtain that

$$
(p-1)!\equiv k!\cdot(-1)^{p-k-1} \cdot(p-k-1)!\quad(\bmod p)
$$

So, working in $\mathbb{F}_{p}[x]$, we have:

$$
f_{1}(x)=\sum_{k=0}^{p-1} \frac{k!\cdot x^{k}}{(-1)^{p-k-1} \cdot k!\cdot(p-k-1)!}=\sum_{k=0}^{p-1} \frac{x^{k}}{(-1)^{p-k-1}(p-k-1)!}
$$

Claim 0.1. Let $h \in \mathbb{F}_{p}[x]$ be a polynomial of degree $p-1$ for which $h(0) \neq 0$. Then the number of distinct roots of $h(x)=0$ in \mathbb{F}_{p} is the same as the number of roots in \mathbb{F}_{p} of $\tilde{h}(x):=x^{p-1} \cdot h(1 / x)$.

Proof of Claim 0.1. Indeed, both $h(x)$ and $\tilde{h}(x)$ are polynomials of degree $p-1$; neither one of them has the root 0 , and moreover, for each $\alpha \in \mathbb{F}_{p}^{*}$, we have that $h(\alpha)=0$ if and only if $\tilde{h}(1 / \alpha)=0$. This concludes our proof of Claim 0.1.

Using Claim 0.1, then it suffices to prove that $\tilde{f}_{1}(x):=x^{p-1} \cdot f_{1}(1 / x) \in \mathbb{F}_{p}[x]$ has at most $\frac{p-1}{2}$ distinct nonzero roots in \mathbb{F}_{p}. We compute:

$$
\tilde{f}_{1}(x)=\sum_{k=0}^{p-1} \frac{x^{p-k-1}}{(-1)^{p-k-1}(p-k-1)!}
$$

and so, letting $g(x):=\tilde{f}_{1}(-x)$, it suffices to prove that $g(x)$ has at most $\frac{p-1}{2}$ distinct roots in \mathbb{F}_{p}. We have that

$$
g(x)=\sum_{k=0}^{p-1} \frac{x^{k}}{k!} \in \mathbb{F}_{p}[x] .
$$

Because for each $\alpha \in \mathbb{F}_{p}$, we have that $\alpha^{p}-\alpha=0$, then it suffices to show that the number of nonzero distinct roots in \mathbb{F}_{p} of

$$
g_{1}(x)=x^{p}-x+g(x) \in \mathbb{F}_{p}[x]
$$

is at most $\frac{p-1}{2}$. Now, because $\left(x^{p}\right)^{\prime}=0$, we see that

$$
g_{1}^{\prime}(x)=-1+g^{\prime}(x)=-1+\sum_{k=0}^{p-2} \frac{x^{k}}{k!}=-1-\frac{x^{p-1}}{(p-1)!}+g(x)=-1+x^{p-1}+g(x)
$$

where in the last equality (in $\mathbb{F}_{p}[x]$), we used the fact that $(p-1)$) $=-1 \in \mathbb{F}_{p}$. So, for each nonzero root $\alpha \in \mathbb{F}_{p}$ of $g_{1}(x)$, since $\alpha^{p}=\alpha$ and $\alpha^{p-1}=1$ in \mathbb{F}_{p}, we conclude that

$$
g_{1}(\alpha)=g(\alpha)=g_{1}^{\prime}(\alpha)=0
$$

Therefore, each nonzero root in \mathbb{F}_{p} of $g_{1}(x)$ has multiplicity at least equal to 2 , thus proving that g_{1} (and so, in turn, g and then also f) has at most $\frac{p-1}{2}$ distinct roots in \mathbb{F}_{p}, as desired.

