PUTNAM PRACTICE SET 32: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let M be an even positive integer. Show that for each positive integer n, the number

$$
M^{M^{M^{n}}}+M^{M^{n}}+M^{n}-1
$$

is a not prime.
Solution. We write each positive integer n as $2^{j} \cdot m$, where $j \geq 0$ and $m \geq 1$ are integers, with m odd. We will show that our number

$$
N:=M^{M^{M^{n}}}+M^{M^{n}}+M^{n}-1
$$

is divisible by $L:=M^{2^{j}}+1$. Since

$$
L \geq M+1>1 \text { and } N>1+1+M^{2^{j}}-1=L
$$

this delivers our desired conclusion. Now, in order to show the desired divisibility, we note that

$$
M^{n} \equiv M^{2^{j} \cdot m} \equiv(L-1)^{m} \equiv(-1)^{m} \equiv-1 \quad(\bmod L)
$$

because m is odd. Furthermore, for each positive integer k, we have:

$$
\begin{equation*}
M^{2^{j} \cdot k} \equiv(-1)^{k} \quad(\bmod L) \tag{1}
\end{equation*}
$$

Now, because M is even (say $M=2 \ell$), we have that

$$
M^{n}=(2 \ell)^{n}=2^{n} \cdot \ell^{n}=2^{j} \cdot 2^{n-j} \cdot \ell^{n}
$$

and $n-j>0$ because $n=2^{j} \cdot m \geq 2^{j}>j$ for each $j \geq 0$. So,

$$
M^{n}=2^{j} \cdot a
$$

for some even positive integer a. Similarly, because

$$
M^{M^{n}}=2^{M^{n}} \cdot \ell^{M^{n}}=2^{j} \cdot 2^{M^{n}-j} \cdot \ell^{M^{n}}
$$

and $M^{n} \geq 2^{n}>n>j$, we can also write

$$
M^{M^{n}}=2^{j} \cdot b
$$

for some even positive integer b. Therefore,

$$
M^{M^{n}} \equiv M^{2^{j} a} \equiv(-1)^{a} \equiv 1 \quad(\bmod L)
$$

and similarly,

$$
M^{M^{M^{n}}} \equiv M^{2^{j} b} \equiv(-1)^{b} \equiv 1 \quad(\bmod L)
$$

In conclusion,

$$
N \equiv 1+1-1-1 \equiv 0 \quad(\bmod L)
$$

as desired.

Problem 2. Let A, B and C be noncollinear points in the plane with integer coordinates such that also the three distances between the points $(A B, B C$ and $C A)$ are integer numbers. What is the smallest possible value for $A B$?

Solution. We claim that the smallest such distance $A B$ is 3 , which is achieved when $A=(0,0), B=(3,0)$ and $C=(0,4)$. In order to show that this is indeed the minimum possible distance, we have to exclude the possibilities 1 and 2 for the length of $A B$ (since the points A, B and C are not collinear, then we can't have $A=B$ and so, we cannot have $|A B|=0)$.

Now, without loss of generality, we may assume $|A C| \geq|B C|$. Since $A B C$ is a triangle, then the triangle inequality forces that

$$
|A B|>|A C|-|B C|
$$

and so, if $|A B|=1$, we would actually need to have $|A C|=|B C|$. But since A, B and C have integer coordinates and furthermore, $|A B|=1$, we must have that

$$
A=(m, n) \text { and } B=(m \pm 1, n)
$$

or

$$
A=(m, n) \text { and } B=(m, n \pm 1)
$$

In the first case, this means $C=(m \pm 1 / 2, k)$, while the second possibility yields $C=(k, n \pm 1 / 2)$; either way, this prevents C to have integer coordinates. Thus, we cannot have that $|A B|=1$, which only leaves us with the possibility that $|A B|=2$. This means that the points A and B have coordinates:

$$
(m \pm 1, n) \text { or }(m, n \pm 1)
$$

Without loss of generality, we assume

$$
A=(m-1, n) \text { and } B=(m+1, n) .
$$

As before, we have the inequality

$$
|A B|=2>|A C|-|B C|
$$

This time noticing that for any point $C=(k, \ell)$, we have that

$$
|A C|^{2}=(m-1-k)^{2}+(n-\ell)^{2} \equiv(m+1-k)^{2}+(n-\ell)^{2}=|B C|^{2} \quad(\bmod 2),
$$

we have that $|A C|$ and $|B C|$ have the same parity, which means that if the difference between $|A C|$ and $|B C|$ is less than 2 in absolute value, then it means that $|A C|=$ $|B C|$. So, this yields that $k=m$ and so, we would need that

$$
1+(n-\ell)^{2} \text { is a perfect square. }
$$

However, this last condition is only met when $n=\ell$, which would then force the points A, B and C be collinear, contradiction. So, indeed, $|A B|=3$ is the minimum possible distance, as claimed.

Problem 3. Find all pairs of polynomials $P(x)$ and $Q(x)$ with the property that

$$
P(x) Q(x+1)-P(x+1) Q(x)=1 .
$$

Solution. First we notice that our given polynomial identity yields that the polynomials $P(x)$ and $Q(x)$ are coprime.

Now, using the identity also in the case $x \mapsto x-1$, i.e., subtracting

$$
P(x) Q(x+1)-P(x+1) Q(x)=1
$$

from

$$
P(x-1) Q(x)-P(x) Q(x-1)=1
$$

yields

$$
(P(x-1)+P(x+1)) \cdot Q(x)=P(x) \cdot(Q(x-1)+Q(x+1)) .
$$

Because $\operatorname{gcd}(P(x), Q(x))=1$, then we conclude that $Q(x)$ must divide the polynomial $Q(x+1)+Q(x-1)$, i.e., there exists a polynomial $R(x)$ such that

$$
Q(x+1)+Q(x-1)=R(x) \cdot Q(x) .
$$

On the other hand, because $\operatorname{deg}(Q(x+1)+Q(x-1))=\operatorname{deg}(Q(x))$ and the leading coefficient of $Q(x+1)+Q(x-1)$ is twice the leading coefficient of $Q(x)$, we conclude that $R(x)$ is identically equal to 2 . So, after a similar analysis for $P(x)$, we conclude that

$$
\begin{equation*}
P(x+1)+P(x-1)=2 P(x) \text { and } Q(x+1)+Q(x-1)=2 Q(x) . \tag{2}
\end{equation*}
$$

Letting the polynomials $A(x):=P(x)-P(x-1)$ and $B(x):=Q(x)-Q(x-1)$, we see that our polynomial identities from (2) yields that

$$
A(x+1)=A(x) \text { and } B(x+1)=B(x) \text { for all } x
$$

Because $A(x)$ and $B(x)$ are polynomials, we conclude that $A(x):=a$ and $B(x):=b$ are identically equal with the two constants a and b.

Now, for a polynomial $f(x)$, if $f(x+1)-f(x)$ is a constant, then this means that its derivative

$$
f^{\prime}(x+1)-f^{\prime}(x)=0 \text { for all } x
$$

and so, $f^{\prime}(x)$ must itself be a constant, i.e., $f(x)$ is a linear polynomial. Therefore, both $P(x)$ and $Q(x)$ are linear polynomials, i.e. for some two other constants c and d, we have that

$$
P(x)=a x+c \text { and } Q(x)=b x+d .
$$

But then our polynomial identity

$$
P(x) Q(x+1)-P(x+1) Q(x)=1
$$

leads us to the relation:

$$
b c-a d=1
$$

In conclusion, the only solutions are any two linear polynomials $(P(x), Q(x))=$ $(a x+c, b x+d)$ for constants a, b, c, d satisfying $b c-a d=1$.

Problem 4. Let $n \in \mathbb{N}$ and let $A \in M_{n, n}(\mathbb{R})$. For each $k \in \mathbb{N}$, we denote by $A^{[k]}$ the n-by- n matrix whose entries are the k-th powers of the corresponding entries in A. If

$$
A^{[k]}=A^{k} \text { for each } 1 \leq k \leq n+1
$$

then $A^{[k]}=A^{k}$ for all $k \geq 1$.
Solution. In terms of notation, for each polynomial $P(x) \in \mathbb{R}[x]$, we denote by $[P(x)] A$ the matrix whose entries are computed by applying the polynomial $P(x)$ to each corresponding entry from the matrix A. So, our hypothesis now reads $A^{[k]}=\left[x^{k}\right] A$ for each $k \geq 1$ and so,

$$
\left[x^{k}\right] A=A^{k} \text { for } 1 \leq k \leq n+1
$$

Now, we know there exists a monic polynomial $f(x) \in \mathbb{R}[x]$ of degree n (by Hamilton-Cayley's famous theorem) such that $f(A)$ is the zero matrix $O_{n, n}$; in particular, letting

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

(for some real numbers a_{j}), we also have (after multiplying $f(A)$ by A) that

$$
A^{n+1}+a_{n-1} A^{n}+a_{n-2} A^{n-1}+\cdots+a_{2} A^{3}+a_{1} A^{2}+a_{0} A=O_{n, n} .
$$

Since $A^{j}=\left[x^{j}\right] A$ for $1 \leq j \leq n+1$, then the above matrix identity yields that

$$
\left[x^{n+1}\right] A+a_{n-1}\left[x^{n}\right] A+a_{n-2}\left[x^{n-1}\right] A+\cdots+a_{2}\left[x^{3}\right] A+a_{1}\left[x^{2}\right] A+a_{0}[x] A=O_{n, n} .
$$

Furthermore, because for each $j=1, \ldots, n+1$ and each real constant c, we have

$$
c\left[x^{j}\right] A=\left[c x^{j}\right] A
$$

and also, for any two polynomials $g, h \in \mathbb{R}[x]$, we have

$$
[g(x)] A+[h(x)] A=[g(x)+h(x)] A
$$

we conclude that

$$
[x f(x)] A=O_{n, n} .
$$

In particular, for each entry $a_{i j}$ of A, we have that

$$
a_{i j} f\left(a_{i j}\right)=0,
$$

which also means that for each $k \geq 2$, we have that

$$
a_{i j}^{k} f\left(a_{i j}\right)=0
$$

So, this means that also

$$
\left[x^{k} f(x)\right] A=O_{n, n} \text { for each } k \geq 2
$$

Now, we obtain the desired conclusion that

$$
\left[x^{m}\right] A=A^{m} \text { for each } m \geq 1
$$

by induction on m. We already know this conclusion for $m=1, \ldots, n+1$ and so, for the inductive hypothesis, we assume that

$$
\left[x^{k}\right] A=A^{k},\left[x^{k+1}\right] A=A^{k+1}, \cdots,\left[x^{k+n}\right] A=A^{k+n}
$$

for some integer $k \geq 1$ and next we show that also,

$$
\left[x^{k+n+1}\right] A=A^{k+n+1} .
$$

To see this, we use that

$$
\left[x^{k+1} f(x)\right] A=O_{n, n}
$$

which means that
(3)
$\left[x^{n+k+1}\right] A+a_{n-1}\left[x^{k+n}\right] A+a_{n-2}\left[x^{k+n-1}\right] A+\cdots+a_{2}\left[x^{k+3}\right] A+a_{1}\left[x^{k+2}\right] A+a_{0}\left[x^{k+1}\right] A=O_{n, n}$.
Now, we know (by the inductive hypothesis) that

$$
\begin{equation*}
\left[x^{m}\right] A=A^{m} \text { for } m=k+1, \ldots, k+n \tag{4}
\end{equation*}
$$

and we also know that since $A^{k+1} f(A)=O_{n, n}$, then
(5) $A^{n+k+1}+a_{n-1} A^{n+k}+a_{n-2} A^{n+k-1}+\cdots+a_{2} A^{k+3}+a_{1} A^{k+2}+a_{0} A^{k+1}=O_{n, n}$.

So, combining (3), (4) and (5) yields that we must also have that

$$
\left[x^{n+k+1}\right] A=A^{n+k+1}
$$

as desired. This concludes the proof for this problem.

