
PUTNAM PRACTICE SET 32: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let M be an even positive integer. Show that for each positive
integer n, the number

MMMn

+ MMn

+ Mn − 1

is a not prime.

Solution. We write each positive integer n as 2j ·m, where j ≥ 0 and m ≥ 1 are
integers, with m odd. We will show that our number

N := MMMn

+ MMn

+ Mn − 1

is divisible by L := M2j + 1. Since

L ≥M + 1 > 1 and N > 1 + 1 + M2j − 1 = L,

this delivers our desired conclusion. Now, in order to show the desired divisibility,
we note that

Mn ≡M2j ·m ≡ (L− 1)m ≡ (−1)m ≡ −1 (mod L)

because m is odd. Furthermore, for each positive integer k, we have:

(1) M2j ·k ≡ (−1)k (mod L).

Now, because M is even (say M = 2`), we have that

Mn = (2`)n = 2n · `n = 2j · 2n−j · `n

and n− j > 0 because n = 2j ·m ≥ 2j > j for each j ≥ 0. So,

Mn = 2j · a,

for some even positive integer a. Similarly, because

MMn

= 2M
n

· `M
n

= 2j · 2M
n−j · `M

n

and Mn ≥ 2n > n > j, we can also write

MMn

= 2j · b,

for some even positive integer b. Therefore,

MMn

≡M2ja ≡ (−1)a ≡ 1 (mod L)

and similarly,

MMMn

≡M2jb ≡ (−1)b ≡ 1 (mod L).

In conclusion,

N ≡ 1 + 1− 1− 1 ≡ 0 (mod L),

as desired.
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Problem 2. Let A, B and C be noncollinear points in the plane with integer
coordinates such that also the three distances between the points (AB, BC and
CA) are integer numbers. What is the smallest possible value for AB?

Solution. We claim that the smallest such distance AB is 3, which is achieved
when A = (0, 0), B = (3, 0) and C = (0, 4). In order to show that this is indeed
the minimum possible distance, we have to exclude the possibilities 1 and 2 for the
length of AB (since the points A, B and C are not collinear, then we can’t have
A = B and so, we cannot have |AB| = 0).

Now, without loss of generality, we may assume |AC| ≥ |BC|. Since ABC is a
triangle, then the triangle inequality forces that

|AB| > |AC| − |BC|
and so, if |AB| = 1, we would actually need to have |AC| = |BC|. But since A, B
and C have integer coordinates and furthermore, |AB| = 1, we must have that

A = (m,n) and B = (m± 1, n)

or

A = (m,n) and B = (m,n± 1).

In the first case, this means C = (m ± 1/2, k), while the second possibility yields
C = (k, n± 1/2); either way, this prevents C to have integer coordinates. Thus, we
cannot have that |AB| = 1, which only leaves us with the possibility that |AB| = 2.
This means that the points A and B have coordinates:

(m± 1, n) or (m,n± 1).

Without loss of generality, we assume

A = (m− 1, n) and B = (m + 1, n).

As before, we have the inequality

|AB| = 2 > |AC| − |BC|
This time noticing that for any point C = (k, `), we have that

|AC|2 = (m− 1− k)2 + (n− `)2 ≡ (m + 1− k)2 + (n− `)2 = |BC|2 (mod 2),

we have that |AC| and |BC| have the same parity, which means that if the difference
between |AC| and |BC| is less than 2 in absolute value, then it means that |AC| =
|BC|. So, this yields that k = m and so, we would need that

1 + (n− `)2 is a perfect square.

However, this last condition is only met when n = `, which would then force the
points A, B and C be collinear, contradiction. So, indeed, |AB| = 3 is the minimum
possible distance, as claimed.

Problem 3. Find all pairs of polynomials P (x) and Q(x) with the property that

P (x)Q(x + 1)− P (x + 1)Q(x) = 1.

Solution. First we notice that our given polynomial identity yields that the
polynomials P (x) and Q(x) are coprime.

Now, using the identity also in the case x 7→ x− 1, i.e., subtracting

P (x)Q(x + 1)− P (x + 1)Q(x) = 1
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from

P (x− 1)Q(x)− P (x)Q(x− 1) = 1

yields

(P (x− 1) + P (x + 1)) ·Q(x) = P (x) · (Q(x− 1) + Q(x + 1)) .

Because gcd(P (x), Q(x)) = 1, then we conclude that Q(x) must divide the polyno-
mial Q(x + 1) + Q(x− 1), i.e., there exists a polynomial R(x) such that

Q(x + 1) + Q(x− 1) = R(x) ·Q(x).

On the other hand, because deg(Q(x+ 1) +Q(x− 1)) = deg(Q(x)) and the leading
coefficient of Q(x+1)+Q(x−1) is twice the leading coefficient of Q(x), we conclude
that R(x) is identically equal to 2. So, after a similar analysis for P (x), we conclude
that

(2) P (x + 1) + P (x− 1) = 2P (x) and Q(x + 1) + Q(x− 1) = 2Q(x).

Letting the polynomials A(x) := P (x) − P (x − 1) and B(x) := Q(x) − Q(x − 1),
we see that our polynomial identities from (2) yields that

A(x + 1) = A(x) and B(x + 1) = B(x) for all x.

Because A(x) and B(x) are polynomials, we conclude that A(x) := a and B(x) := b
are identically equal with the two constants a and b.

Now, for a polynomial f(x), if f(x + 1) − f(x) is a constant, then this means
that its derivative

f ′(x + 1)− f ′(x) = 0 for all x

and so, f ′(x) must itself be a constant, i.e., f(x) is a linear polynomial. Therefore,
both P (x) and Q(x) are linear polynomials, i.e. for some two other constants c and
d, we have that

P (x) = ax + c and Q(x) = bx + d.

But then our polynomial identity

P (x)Q(x + 1)− P (x + 1)Q(x) = 1

leads us to the relation:

bc− ad = 1.

In conclusion, the only solutions are any two linear polynomials (P (x), Q(x)) =
(ax + c, bx + d) for constants a, b, c, d satisfying bc− ad = 1.

Problem 4. Let n ∈ N and let A ∈Mn,n(R). For each k ∈ N, we denote by A[k]

the n-by-n matrix whose entries are the k-th powers of the corresponding entries
in A. If

A[k] = Ak for each 1 ≤ k ≤ n + 1,

then A[k] = Ak for all k ≥ 1.

Solution. In terms of notation, for each polynomial P (x) ∈ R[x], we denote by
[P (x)]A the matrix whose entries are computed by applying the polynomial P (x)
to each corresponding entry from the matrix A. So, our hypothesis now reads
A[k] = [xk]A for each k ≥ 1 and so,

[xk]A = Ak for 1 ≤ k ≤ n + 1.
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Now, we know there exists a monic polynomial f(x) ∈ R[x] of degree n (by
Hamilton-Cayley’s famous theorem) such that f(A) is the zero matrix On,n; in
particular, letting

f(x) = xn + an−1x
n−1 + · · ·+ a1x + a0,

(for some real numbers aj), we also have (after multiplying f(A) by A) that

An+1 + an−1A
n + an−2A

n−1 + · · ·+ a2A
3 + a1A

2 + a0A = On,n.

Since Aj = [xj ]A for 1 ≤ j ≤ n + 1, then the above matrix identity yields that

[xn+1]A + an−1[xn]A + an−2[xn−1]A + · · ·+ a2[x3]A + a1[x2]A + a0[x]A = On,n.

Furthermore, because for each j = 1, . . . , n + 1 and each real constant c, we have

c[xj ]A = [cxj ]A

and also, for any two polynomials g, h ∈ R[x], we have

[g(x)]A + [h(x)]A = [g(x) + h(x)]A,

we conclude that
[xf(x)]A = On,n.

In particular, for each entry aij of A, we have that

aijf(aij) = 0,

which also means that for each k ≥ 2, we have that

akijf(aij) = 0.

So, this means that also

[xkf(x)]A = On,n for each k ≥ 2.

Now, we obtain the desired conclusion that

[xm]A = Am for each m ≥ 1

by induction on m. We already know this conclusion for m = 1, . . . , n + 1 and so,
for the inductive hypothesis, we assume that

[xk]A = Ak, [xk+1]A = Ak+1, · · · , [xk+n]A = Ak+n

for some integer k ≥ 1 and next we show that also,

[xk+n+1]A = Ak+n+1.

To see this, we use that
[xk+1f(x)]A = On,n,

which means that
(3)
[xn+k+1]A+an−1[xk+n]A+an−2[xk+n−1]A+· · ·+a2[xk+3]A+a1[xk+2]A+a0[xk+1]A = On,n.

Now, we know (by the inductive hypothesis) that

(4) [xm]A = Am for m = k + 1, . . . , k + n

and we also know that since Ak+1f(A) = On,n, then

(5) An+k+1+an−1A
n+k +an−2A

n+k−1+ · · ·+a2A
k+3+a1A

k+2+a0A
k+1 = On,n.

So, combining (3), (4) and (5) yields that we must also have that

[xn+k+1]A = An+k+1,
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as desired. This concludes the proof for this problem.


