
PUTNAM PRACTICE SET 31: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Is there an infinite sequence of real numbers {an}n≥1 such that
∞∑

n=1

amn = m

for each m ∈ N?

Solution. No; here’s why. Assuming there exists such an infinite sequence, then
there are two possibilities:

Case 1. For each n ≥ 1, we have that 0 ≤ a2n ≤ 1. In this case we would have
that a4n ≤ a2n for each n ≥ 1, which contradicts the fact that

∞∑
n=1

a4n = 4 > 2 =

∞∑
n=1

a2n.

Case 2. There exists k ≥ 1 such that a2k > 1. But then for surfficiently large
m, we would have that

a2mk > 2m

since the function x 7→ (a2k)x − x tends to infinity as x tends to infinity (because
a2k > 1). So, we get a contradiction in both cases, thus showing that indeed no such
sequence {an}n≥1 exists.

Problem 2. Given a positive integer n, what is the largest k such that the
numbers 1, 2, . . . , n can be placed into k boxes with the sum of the integers in each
box being the same across all boxes?

Solution. The largest such number k is
[
n+1
2

]
. Indeed, if n = 2`, we can simply

partition {1, 2, . . . , 2`} into ` subsets with 2 elements each:

{1, 2`}; {2, 2`− 1}; · · · ; {`, ` + 1},
while if n = 2` + 1, then we partition {1, 2, . . . , 2` + 1} into ` + 1 subsets:

{2` + 1}; {1, 2`}; {2, 2`− 1}; · · · ; {`, ` + 1}.
So, k =

[
n+1
2

]
is definitely a possibility as desired; now, the point is to prove that

we cannot use a partition in more than
[
n+1
2

]
subsets of {1, 2, . . . , n} such that the

sum of numbers in each subset is the same. To see that this is not possible, we
note that n must be contained in one of the subsets and so, the common sum for
the integers in each subset is at least n and thus the number k of subsets in our
partition must satisfy the inequality:

kn ≤ 1 + 2 + · · ·+ n

and thus, k ≤ n+1
2 , as desired.

Alternatively, we could have noticed that using more than
[
n+1
2

]
subsets for our

partition yields that we have at least two subsets in our partition with only one
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element in them, and this would be impossible since then not all subsets would
contain integers adding up to the same number.

Problem 3. Find all differentiable functions f : R −→ R for which

f ′(x) =
f(x + n)− f(x)

n

for each x ∈ R and for each n ∈ N.

Solution. Clearly, any linear function f(x) = ax + b satisfies the condition
from this problem; we’ll prove next that the linear functions are the only functions
meeting the given conditions for all n ∈ N (and all x ∈ R).

Now, using the hypothesis for n = 1, we get

(1) f ′(x) = f(x + 1)− f(x).

On the other hand, using the hypothesis for n = 2, we get

2f ′(x) = f(x + 2)− f(x)

and so, combining the last equality with (1), which yields also that f ′(x + 1) =
f(x + 2)− f(x + 1), we obtain

2f ′(x) = f(x+2)−f(x) = (f(x + 2)− f(x + 1))+(f(x + 1)− f(x)) = f ′(x+1)+f ′(x)

and so, f ′(x+ 1) = f ′(x) for all x ∈ R. We consider the function g : R −→ R given
by

g(x) = f(x + 1)− f(x),

for which we have that

g′(x) = f ′(x + 1)− f ′(x) = 0.

So, there exists a positive real number a such that

g(x) = a for all x ∈ R.

In particular, because of (1) (and that g(x) = f(x + 1)− f(x)), we conclude that

f ′(x) = a for all x ∈ R.

In conclusion, since the derivative of f is constant, we conclude that indeed, f(x) =
ax + b must be a linear function (for given a, b ∈ R).

Problem 4. Let a, b ∈ R and let f : R2 −→ R be a function with continuous
partial derivatives, which satisfies the following equation:

f(x, y) = a · df

dx
(x, y) + b · df

dy
(x, y)

for each (x, y) ∈ R2. Prove that if there exists a constant M such that

|f(x, y)| ≤M for each (x, y) ∈ R2,

then f must be identically equal to 0.

Solution. Now, if a = b = 0, then the conclusion is trivial. So, from now on, we
assume (a, b) 6= (0, 0).

We let (x0, y0) ∈ R2 and we will show that f(x0, y0) = 0.
We consider the function h : [0, 1] −→ R2 given by

h(t) = (x0 + at, y0 + bt).
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Then our hypothesis yields that for the function g = f ◦ h : [0, 1] −→ R, we have:

g′(t) = g(t),

thus showing that there exists some constant C0 ∈ R such that g(t) = C0e
t. On the

other hand, we know that |f | is bounded above, which means that |g| is bounded
above; this can only happen if C0 = 0, which automatically yields that

g(0) = f(x0, y0) = 0,

as desired.


