PUTNAM PRACTICE SET 30: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let $f:[0,1]^{2} \longrightarrow \mathbb{R}$ be a continuous function on the unit square such that the partial derivatives $\mathrm{df} / \mathrm{dx}$ and $\mathrm{df} / \mathrm{dy}$ exists and are continuous on the interior $(0,1)^{2}$. Prove or disprove whether there always exists some point $\left(x_{0}, y_{0}\right) \in$ $(0,1)^{2}$ such that:
$\frac{\mathrm{df}}{\mathrm{dx}}\left(x_{0}, y_{0}\right)=\int_{0}^{1} f(1, y) \mathrm{dy}-\int_{0}^{1} f(0, y) \mathrm{dy}$ and $\frac{\mathrm{df}}{\mathrm{dy}}\left(x_{0}, y_{0}\right)=\int_{0}^{1} f(x, 1) \mathrm{dx}-\int_{0}^{1} f(x, 0) \mathrm{dx}$
Solution. We show that the statement doesn't always hold; a counterexample is provided by the function $f(x, y)=x \sin (2 \pi y)$. In this case, we have that

$$
\int_{0}^{1} f(0, y) \mathrm{d} y=\int_{0}^{1} f(1, y) \mathrm{d} y=\int_{0}^{1} f(x, 0) \mathrm{d} \mathrm{x}=\int_{0}^{1} f(x, 1) \mathrm{d} \mathrm{x}=0 .
$$

On the other hand,

$$
\frac{\mathrm{df}}{\mathrm{dx}}(x, y)=\sin (2 \pi y) \text { and } \frac{\mathrm{df}}{\mathrm{dy}}(x, y)=2 \pi x \cos (2 \pi y)
$$

and so, both derivatives being 0 at some point $\left(x_{0}, y_{0}\right) \in(0,1)^{2}$ would force first that $y_{0}=\frac{1}{2}$, but then x_{0} would need to be equal to 0 , which means that the point (x_{0}, y_{0}) would not be inside the unit square.

Problem 2. Show that every positive rational number can be written as a quotient of factorials of primes (not necessarily distinct); for example,

$$
\frac{6}{7}=\frac{3!\cdot 3!\cdot 5!}{7!}
$$

Solution. We write a given positive rational number in its lowest terms as $\frac{a}{b}$ with $a, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$. We prove our statement by induction on the largest prime p dividing either a or b. The first case can be taken to be even the case when there is no prime dividing either a or b, i.e., $a=b=1$, in which case, clearly

$$
\frac{1}{1}=\frac{2!}{2!} \text {, for example. }
$$

On the other hand, even the case $p=2$ is the largest prime dividing either a or b follows just as easily since this would mean that $\frac{a}{b}=2^{\ell}$ for some $\ell \in \mathbb{Z}$ and so, we could simply write

$$
\frac{a}{b}=(2!)^{\ell}
$$

Now, we assume that any fraction $\frac{a}{b}$ in which the largest prime dividing a or b is less than a given prime number p can be written in the form indicated in our conclusion. So, we assume p^{k} is the largest power of p appearing in $\frac{a}{b}$ (so, in particular, we
allow for the possibility that k is negative, which corresponds to the case when $p \mid b)$. But then, we have

$$
\frac{a}{b}=(p!)^{k} \cdot \frac{c}{d \cdot((p-1)!)^{k}},
$$

for some positive integers c and d. Very important: both c and d are divisible by primes less than p; also, $(p-1)$! is divisible by primes less than p and therefore, the inductive hypothesis can be applied and so, $\frac{c}{d \cdot((p-1)!)^{k}}$ is indeed written as desired (and in turn $\frac{a}{b}$ is written as in the conclusion for this problem).

Problem 3. A game involves jumping to the right on the real number line. If a and b are real numbers and $b>a$, the cost of jumping from a to b is $b^{3}-a b^{2}$. For what real numbers c, can one travel from 0 to 1 in a finite number of jumps with total cost equal to c ?

Solution. We are asked the following: find all possible values for the real number c for which there exists $n \in \mathbb{N}$ and real numbers:

$$
0=a_{0}<a_{1}<a_{2}<\cdots<a_{n-1}<a_{n}=1
$$

such that

$$
\sum_{i=1}^{n} a_{i}^{2} \cdot\left(a_{i}-a_{i-1}\right)=c .
$$

Now, on one hand, using right Riemann sums, we immediately see that

$$
\sum_{i=1}^{n} a_{i}^{2} \cdot\left(a_{i}-a_{i-1}\right)>\int_{0}^{1} x^{2} \mathrm{dx}=\frac{1}{3}
$$

Also, we clearly have that

$$
\sum_{i=1}^{n} a_{i}^{2} \cdot\left(a_{i}-a_{i-1}\right) \leq \sum_{i=1}^{n}\left(a_{i}-a_{i-1}\right)=1,
$$

with equality in the case $n=1$ and so, $a_{0}=0<1=a_{1}$. So, the numbers c as above must be contained in the interval $(1 / 3,1]$. We've just seen that $c=1$ is possible; we'll prove next that each real number $c \in(1 / 3,1)$ can also be attained.

First, we see that each number c arbitrarily closer to $\frac{1}{3}$, but larger than $\frac{1}{3}$ can also be achieved. Indeed, let

$$
a_{i}=\frac{i}{n} \text { for } i=0,1, \ldots, n .
$$

Then

$$
\sum_{i=1}^{n} a_{i}^{2}\left(a_{i}-a_{i-1}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2}=\frac{(n+1)(2 n+1)}{6 n^{2}}
$$

which clearly converges to $\frac{1}{3}$ (from above) as $n \rightarrow \infty$. (Actually, we can see this last fact also by interpreting once again the above sum as a Riemann sum for the integral of x^{2} over the interval $[0,1]$ and see that when n tends to infinity, the Riemann sum approaches the actual value of the integral, which is $\frac{1}{3}$.)

Now, for the same choice of $a_{i}=\frac{i}{n}$ for $i=0,1, \ldots, n$ (for some given positive integer n), we let for each $k=1, \ldots, n$:

$$
c_{k}:=a_{k}^{3}+\sum_{i=k+1}^{n} a_{i}^{2} \cdot\left(a_{i}-a_{i-1}\right) .
$$

So, $c_{1}=\frac{(n+1)(2 n+1)}{6 n^{2}}$ and $c_{n}=1$. We claim that each number c from c_{1} to c_{n} can also be achieved by some suitable sequence. Indeed, for each $k=2, \ldots, n$, we consider the sequence

$$
0, x, a_{k}, a_{k+1}, \ldots, a_{n}
$$

where we let x vary between 0 and a_{k-1}. We compute the cost associated to the above sequence, as a function of x :

$$
c(x):=x^{3}+a_{k}^{2}\left(a_{k}-x\right)+\sum_{i=k+1}^{n} a_{i}^{2}\left(a_{i}-a_{i-1}\right)
$$

which can be written in terms of c_{k} as follows:

$$
c(x)=x^{3}-x a_{k}^{2}+c_{k}=c_{k}-x\left(a_{k}^{2}-x^{2}\right)
$$

Now, clearly, the function

$$
x \mapsto c_{k}-x\left(a_{k}^{2}-x^{2}\right)
$$

for $x \in\left[0, a_{k-1}\right]$ varies continuously between c_{k-1} (attained when $x=a_{k-1}$) and c_{k} (attained when $x=0$). So, all the values between c_{k-1} and c_{k} are taken for each $k=2, \ldots, n$; therefore, indeed all values $c \in(1 / 3,1]$ can be achieved.

Problem 4. Say that a polynomial $P \in \mathbb{R}[x, y]$ is balanced if the average value of the polynomial on each circle centered at the origin is 0 , i.e.,

$$
\int_{C} P(x, y)=0
$$

for any circle C in the cartesian plane. The balanced polynomials of degree 2021 form an \mathbb{R}-vector space V; find $\operatorname{dim}_{\mathbb{R}} V$.

Solution. Each polynomial $P \in \mathbb{R}[x, y]$ of degree d can be written as sum of homogeneous polynomials P_{i} of degrees i, for $i=0,1, \ldots, d$. On the other hand, for any given homogeneous polynomial Q and any circle C of radius r centered at the origin, we have that

$$
\int_{C} Q(x, y)=r^{i} \cdot \int_{C_{1}} Q(x, y)
$$

where C_{1} is the unit circle centered at the origin. So, letting

$$
A_{i}:=\int_{C_{1}} P_{i}(x, y) \text { for } i=0, \ldots, d
$$

we get that

$$
\int_{C} P(x, y)=0 \text { for each circle } C \text { centered at the origin }
$$

if and only if

$$
\begin{equation*}
\sum_{i=0}^{d} A_{i} r^{i}=0 \text { for any } r>0 \tag{1}
\end{equation*}
$$

because for a circle C of radius r centered at the origin, we have
$\int_{C} P_{i}(x, y)=\int_{0}^{2 \pi} P_{i}(r \cos (t), r \sin (t)) \mathrm{dt}=r^{i} \cdot \int_{0}^{2 \pi} P_{i}(\cos (t), \sin (t)) \mathrm{dt}=r^{i} \cdot \int_{C_{1}} P_{i}(x, y)$.
Clearly, the above equation (1) is a polynomial identity (because the A_{i} 's are simply constants); so, (1) holds if and only if

$$
A_{i}=0 \text { for } i=0,1, \ldots, d
$$

Now, for each odd integer i (from 0 to d), we have that $A_{i}=0$ since for any odd homogeneous polynomial $Q \in \mathbb{R}[x, y]$ (i.e., when $Q(-x,-y)=-Q(x, y)$), we have that

$$
\begin{equation*}
\int_{C_{1}} Q(x, y)=0 \tag{2}
\end{equation*}
$$

We can see the validity of (2) from the fact that

$$
\begin{gathered}
\int_{C_{1}} Q(x, y)=\int_{0}^{2 \pi} Q(\cos (t), \sin (t)) \mathrm{dt}=\int_{0}^{2 \pi} Q(\cos (t+\pi), \sin (t+\pi)) \mathrm{dt}= \\
=\int_{0}^{2 \pi} Q(-\cos (t),-\sin (t)) \mathrm{dt}=-\int_{0}^{2 \pi} Q(\cos (t), \sin (t)) \mathrm{dt}
\end{gathered}
$$

So, $A_{i}=0$ whenever i is odd regardless of the homogeneous polynomials P_{i}. Now, when i is even, the condition $A_{i}=0$ imposes some linear condition on the polynomial P_{i} (the coefficients of this linear condition are given by integrating $x^{j} y^{i-j}$ over C_{1} for $\left.j=0, \ldots, i\right)$, and thus, in turn, it imposes a linear condition on the coefficients of P. (Also, note that these conditions are independent since they refer to different coefficients because each P_{i} is homogeneous of degree i.)

Now, for i even, the corresponding linear condition is nontrivial since whenever $0 \leq j \leq i$ is also even, then integrating $x^{j} y^{i-j}$ over C_{1} would always give us a strictly positive real number. Thus, we have for each even $0 \leq i \leq d$ some nontrivial linear relation among the coefficients of $x^{j} y^{i-j}$ of $P(x, y)$ (for $\left.0 \leq j \leq i\right)$. Hence, for an odd integer d (such as 2021), we have no restriction for the coefficients of the odd (total degree) monomials in $P(x, y)$, and we have $\frac{d+1}{2}$ linearly independent relations to be satisfied by the coefficients of the monomials of even (total degree) in $P(x, y)$. Therefore, the dimension of our given linear space of polynomials must be

$$
-\frac{d+1}{2}+\sum_{i=0}^{d}(i+1)=\frac{(d+1)^{2}}{2}
$$

