
PUTNAM PRACTICE SET 30: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let f : [0, 1]2 −→ R be a continuous function on the unit square
such that the partial derivatives df/dx and df/dy exists and are continuous on the
interior (0, 1)2. Prove or disprove whether there always exists some point (x0, y0) ∈
(0, 1)2 such that:

df

dx
(x0, y0) =

∫ 1

0

f(1, y)dy−
∫ 1

0

f(0, y)dy and
df

dy
(x0, y0) =

∫ 1

0

f(x, 1)dx−
∫ 1

0

f(x, 0)dx

Solution. We show that the statement doesn’t always hold; a counterexample is
provided by the function f(x, y) = x sin(2πy). In this case, we have that∫ 1

0

f(0, y)dy =

∫ 1

0

f(1, y)dy =

∫ 1

0

f(x, 0)dx =

∫ 1

0

f(x, 1)dx = 0.

On the other hand,

df

dx
(x, y) = sin(2πy) and

df

dy
(x, y) = 2πx cos(2πy)

and so, both derivatives being 0 at some point (x0, y0) ∈ (0, 1)2 would force first
that y0 = 1

2 , but then x0 would need to be equal to 0, which means that the point
(x0, y0) would not be inside the unit square.

Problem 2. Show that every positive rational number can be written as a quotient
of factorials of primes (not necessarily distinct); for example,

6

7
=

3! · 3! · 5!

7!
.

Solution. We write a given positive rational number in its lowest terms as a
b with

a, b ∈ N and gcd(a, b) = 1. We prove our statement by induction on the largest
prime p dividing either a or b. The first case can be taken to be even the case when
there is no prime dividing either a or b, i.e., a = b = 1, in which case, clearly

1

1
=

2!

2!
, for example.

On the other hand, even the case p = 2 is the largest prime dividing either a or b
follows just as easily since this would mean that a

b = 2` for some ` ∈ Z and so, we
could simply write

a

b
= (2!)

`
.

Now, we assume that any fraction a
b in which the largest prime dividing a or b is less

than a given prime number p can be written in the form indicated in our conclusion.
So, we assume pk is the largest power of p appearing in a

b (so, in particular, we
1
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allow for the possibility that k is negative, which corresponds to the case when
p | b). But then, we have

a

b
= (p!)

k · c

d · ((p− 1)!)
k
,

for some positive integers c and d. Very important: both c and d are divisible by
primes less than p; also, (p−1)! is divisible by primes less than p and therefore, the
inductive hypothesis can be applied and so, c

d·((p−1)!)k
is indeed written as desired

(and in turn a
b is written as in the conclusion for this problem).

Problem 3. A game involves jumping to the right on the real number line. If a
and b are real numbers and b > a, the cost of jumping from a to b is b3 − ab2. For
what real numbers c, can one travel from 0 to 1 in a finite number of jumps with
total cost equal to c?

Solution. We are asked the following: find all possible values for the real number
c for which there exists n ∈ N and real numbers:

0 = a0 < a1 < a2 < · · · < an−1 < an = 1

such that
n∑
i=1

a2i · (ai − ai−1) = c.

Now, on one hand, using right Riemann sums, we immediately see that

n∑
i=1

a2i · (ai − ai−1) >

∫ 1

0

x2dx =
1

3
.

Also, we clearly have that

n∑
i=1

a2i · (ai − ai−1) ≤
n∑
i=1

(ai − ai−1) = 1,

with equality in the case n = 1 and so, a0 = 0 < 1 = a1. So, the numbers c as above
must be contained in the interval (1/3, 1]. We’ve just seen that c = 1 is possible;
we’ll prove next that each real number c ∈ (1/3, 1) can also be attained.

First, we see that each number c arbitrarily closer to 1
3 , but larger than 1

3 can
also be achieved. Indeed, let

ai =
i

n
for i = 0, 1, . . . , n.

Then
n∑
i=1

a2i (ai − ai−1) =
1

n
·
n∑
i=1

(
i

n

)2

=
(n+ 1)(2n+ 1)

6n2
,

which clearly converges to 1
3 (from above) as n→∞. (Actually, we can see this

last fact also by interpreting once again the above sum as a Riemann
sum for the integral of x2 over the interval [0, 1] and see that when n
tends to infinity, the Riemann sum approaches the actual value of the
integral, which is 1

3 .)
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Now, for the same choice of ai = i
n for i = 0, 1, . . . , n (for some given positive

integer n), we let for each k = 1, . . . , n:

ck := a3k +

n∑
i=k+1

a2i · (ai − ai−1).

So, c1 = (n+1)(2n+1)
6n2 and cn = 1. We claim that each number c from c1 to cn

can also be achieved by some suitable sequence. Indeed, for each k = 2, . . . , n, we
consider the sequence

0, x, ak, ak+1, . . . , an

where we let x vary between 0 and ak−1. We compute the cost associated to the
above sequence, as a function of x:

c(x) := x3 + a2k(ak − x) +

n∑
i=k+1

a2i (ai − ai−1)

which can be written in terms of ck as follows:

c(x) = x3 − xa2k + ck = ck − x(a2k − x2).

Now, clearly, the function

x 7→ ck − x(a2k − x2)

for x ∈ [0, ak−1] varies continuously between ck−1 (attained when x = ak−1) and ck
(attained when x = 0). So, all the values between ck−1 and ck are taken for each
k = 2, . . . , n; therefore, indeed all values c ∈ (1/3, 1] can be achieved.

Problem 4. Say that a polynomial P ∈ R[x, y] is balanced if the average value of
the polynomial on each circle centered at the origin is 0, i.e.,∫

C

P (x, y) = 0

for any circle C in the cartesian plane. The balanced polynomials of degree 2021
form an R-vector space V ; find dimR V .

Solution. Each polynomial P ∈ R[x, y] of degree d can be written as sum of
homogeneous polynomials Pi of degrees i, for i = 0, 1, . . . , d. On the other hand,
for any given homogeneous polynomial Q and any circle C of radius r centered at
the origin, we have that ∫

C

Q(x, y) = ri ·
∫
C1

Q(x, y),

where C1 is the unit circle centered at the origin. So, letting

Ai :=

∫
C1

Pi(x, y) for i = 0, . . . , d,

we get that ∫
C

P (x, y) = 0 for each circle C centered at the origin

if and only if

(1)

d∑
i=0

Air
i = 0 for any r > 0
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because for a circle C of radius r centered at the origin, we have∫
C

Pi(x, y) =

∫ 2π

0

Pi(r cos(t), r sin(t))dt = ri·
∫ 2π

0

Pi(cos(t), sin(t))dt = ri·
∫
C1

Pi(x, y).

Clearly, the above equation (1) is a polynomial identity (because the Ai’s are simply
constants); so, (1) holds if and only if

Ai = 0 for i = 0, 1, . . . , d.

Now, for each odd integer i (from 0 to d), we have that Ai = 0 since for any odd
homogeneous polynomial Q ∈ R[x, y] (i.e., when Q(−x,−y) = −Q(x, y)), we have
that

(2)

∫
C1

Q(x, y) = 0.

We can see the validity of (2) from the fact that∫
C1

Q(x, y) =

∫ 2π

0

Q(cos(t), sin(t))dt =

∫ 2π

0

Q(cos(t+ π), sin(t+ π))dt =

=

∫ 2π

0

Q(− cos(t),− sin(t))dt = −
∫ 2π

0

Q(cos(t), sin(t))dt.

So, Ai = 0 whenever i is odd regardless of the homogeneous polynomials Pi.
Now, when i is even, the condition Ai = 0 imposes some linear condition on the
polynomial Pi (the coefficients of this linear condition are given by integrating
xjyi−j over C1 for j = 0, . . . , i), and thus, in turn, it imposes a linear condition
on the coefficients of P . (Also, note that these conditions are independent
since they refer to different coefficients because each Pi is homogeneous
of degree i.)

Now, for i even, the corresponding linear condition is nontrivial since whenever
0 ≤ j ≤ i is also even, then integrating xjyi−j over C1 would always give us a strictly
positive real number. Thus, we have for each even 0 ≤ i ≤ d some nontrivial linear
relation among the coefficients of xjyi−j of P (x, y) (for 0 ≤ j ≤ i). Hence, for
an odd integer d (such as 2021), we have no restriction for the coefficients of the
odd (total degree) monomials in P (x, y), and we have d+1

2 linearly independent
relations to be satisfied by the coefficients of the monomials of even (total degree)
in P (x, y). Therefore, the dimension of our given linear space of polynomials must
be

−d+ 1

2
+

d∑
i=0

(i+ 1) =
(d+ 1)2

2
.


