PUTNAM PRACTICE SET 28: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. What is the maximum number of points in the cartesian plane whose both coordinates are rational numbers, which lie on the same circle whose center is not a point whose both coordinates are rational numbers?

Solution. Let (x_0, y_0) be the coordinates of the center of the circle and let (x_i, y_i) for $i = 1, \ldots, \ell$ be points with both coordinates rational numbers lying on our circle; our goal is to find the largest value for ℓ . We know that $\ell = 2$ is possible since both (-1, 0) and (1, 0) lie on the same circle centered at the point $(0, \alpha)$ for any $\alpha \in \mathbb{R}$. We will show below that $\ell \geq 3$ is impossible.

So, assume $\ell \geq 3$; then we know that for each $i = 1, \ldots, \ell$, we have that

$$(x_i - x_0)^2 + (y_i - y_0)^2 = (x_1 - x_0)^2 + (y_1 - y_0)^2.$$

This last equation simplifies to

(1)
$$x_i^2 + y_i^2 - x_1^2 - y_1^2 = 2(x_i - x_1) \cdot x_0 + 2(y_i - y_1) \cdot y_0.$$

We know that noth both x_0 and y_0 are rational numbers; without loss of generality, we may assume $y_0 \notin \mathbb{Q}$.

Since not all 3 points (x_i, y_i) for i = 1, 2, 3 can lie on the same line, then we cannot have that $y_1 = y_2 = y_3$; so, without loss of generality, we assume $y_3 \neq y_1$. Using (1) for i = 3, we conclude that also $x_3 - x_1 \neq 0$ since otherwise we would derive a contradiction because the left hand side is given to be rational, while the right hand wouldn't be rational.

Now, similar to equation (1), we get

(2)
$$x_2^2 + y_2^2 - x_3^2 - y_3^2 = 2(x_2 - x_3) \cdot x_0 + 2(y_2 - y_3) \cdot y_0$$

So, either $y_2 - y_3 \neq 0$ or $y_2 - y_1 \neq 0$; again, without loss of generality, we may assume $y_2 - y_1 \neq 0$. Therefore, arguing as before, we get $x_2 - x_1 \neq 0$; also, we have:

(3)
$$(x_2 - x_1) \cdot x_0 + (y_2 - y_1) \cdot y_0 \in \mathbb{Q}$$
 and $(x_3 - x_1) \cdot x_0 + (y_3 - y_1) \cdot y_0 \in \mathbb{Q}$.

Now, if

(4)
$$\frac{y_2 - y_1}{x_2 - x_1} \neq \frac{y_3 - y_1}{x_3 - x_1}$$

then (3) yields that $x_0, y_0 \in \mathbb{Q}$, which is a contradiction. So, we must have that

$$\frac{y_3 - y_1}{x_3 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

which means that the three points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are on the same line, contradicting that they are on the same circle. So, indeed we cannot have more than 2 points with rational coordinates on the same circle whose center doesn't have rational coordinates.

Problem 2. Let $F_0(x) = \log(x)$ and for each $n \ge 1$ and x > 0, we let

$$F_n(x) = \int_0^x F_{n-1}(t) \mathrm{d}t$$

Compute

$$\lim_{n \to \infty} \frac{n! \cdot F_n(1)}{\ln(n)}$$

Solution. We claim that for each $n \ge 1$, we have that

$$F_n(x) = \frac{x^n}{n!} \cdot \left(\log(x) - \sum_{k=1}^n \frac{1}{k} \right).$$

The statement is easily seen to be true when n = 1 since - integrating by parts we obtain that $F_1(x) = x \log(x) - x$. (Here we also use implicitly the fact that

$$\lim_{x \to 0^+} x \log(x) = 0$$

and thus, more generally, for any positive integer m, we have that

$$\lim_{x \to 0^+} x^m \log(x) = 0$$

The above limits are easily computed using L'Hôpital's Rule, for example.) Then, inductively, we see that if

$$F_n(x) = \frac{x^n}{n!} \cdot \left(\log(x) - \sum_{k=1}^n \frac{1}{k} \right),$$

then computing $F_{n+1}(x)$ (again using integration by parts and the above limit of $x^m \log(x)$ as $x \to 0^+$), we get

$$F_{n+1}(x) = \frac{x^{n+1}}{(n+1)!} \cdot \log(x) - \frac{x^{n+1}}{(n+1)! \cdot (n+1)} - \frac{x^{n+1}}{(n+1)!} \cdot \left(\sum_{k=1}^{n} \frac{1}{k}\right),$$

which delivers the desired formula for $F_{n+1}(x)$ inductively. Therefore

$$n! \cdot F_n(1) = -\sum_{k=1}^n \frac{1}{k}$$

and so, we are left to compute the limit

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\log(n)}.$$

Now, using the fact that the function $x \mapsto \frac{1}{x}$ is decreasing for $x \ge 1$, we see that

$$\int_{1}^{n+1} \frac{1}{x} dx < \sum_{k=1}^{n} \frac{1}{k} < 1 + \int_{1}^{n} \frac{1}{x} dx$$

(after considering left, respectively right Riemann sums for the integral of 1/x). So, this means that

$$\log(n+1) < \sum_{k=1}^{n} \frac{1}{k} < 1 + \log(n)$$

and therefore, using the Squeeze Theorem, we conclude that

$$\lim_{n \to \infty} \frac{n! \cdot F_n(1)}{\log(n)} = -\lim_{n \to \infty} \frac{\sum_{k=1}^n \frac{1}{k}}{\log(n)} = -1.$$

Problem 3. Let p be a prime number and let $f \in \mathbb{Z}[x]$. Assume that the integers f(k) for $0 \le k \le p^2 - 1$ are all distinct modulo p^2 . Then prove that for each $n \in \mathbb{N}$, the integers f(k) for $0 \le k \le p^n - 1$ are distinct modulo p^n .

Solution. First of all, we know that if

$$x \equiv y \pmod{m}$$
 then $f(x) \equiv f(y) \pmod{m}$

for any integers x, y, m. In particular, this means that

$$f(k+pj) \equiv f(k) \pmod{p}$$
 for each $k, j = 0, \dots, p-1$.

On the other hand, a simple computation shows that

$$f(k+pj) \equiv f(k) + pjf'(k) \pmod{p^2}$$
 for $k, j = 0, \dots, p-1$.

Since the numbers f(k + pj) are distinct modulo p^2 , then this means that actually f'(k) is not divisible by p (for each k = 0, ..., p - 1).

Now, we prove inductively on n that the numbers $f(0), \ldots, f(p^n - 1)$ are all distinct modulo p^n ; the statement for n = 1, 2 is already the hypothesis in our problem. So, we assume that $f(0), \ldots, f(p^n - 1)$ are distinct modulo p^n (for some $n \ge 2$) and we prove that $f(0), \ldots, f(p^{n+1} - 1)$ are distinct modulo p^{n+1} .

We have that for each $\ell \in \{0, \ldots, p^n - 1\}$,

$$f'(\ell) \not\equiv 0 \pmod{p}$$

because each $f'(\ell)$ is congruent with some f'(k) modulo p where $\ell \equiv k \pmod{p}$ and we know that for $k \in \{0, \ldots, p-1\}$, we have that

$$f'(k) \not\equiv 0 \pmod{p}.$$

Now, since each $f(\ell)$ are distinct modulo p^n for $\ell = 0, \ldots, p^n - 1$, in order to obtain the inductive conclusion, all we need to show is that for each $j \in \{0, \ldots, p-1\}$, the numbers $f(\ell + jp^n)$ are distinct modulo p^{n+1} . But using the same computation as before (which is essentially a Taylor expansion around $x = \ell$, or alternatively obtained from expanding each monomial from $f(\ell + jp^n)$), we have that

$$f(\ell + jp^n) \equiv f(\ell) + jp^n f'(\ell) \pmod{p^{n+1}}.$$

Since p doesn't divide $f'(\ell)$, then as we vary $j \in \{0, \ldots, p-1\}$, we obtain distinct residue classes modulo p^{n+1} for the numbers $f(\ell + jp^n)$, therefore showing that the integers $f(0), \ldots, f(p^{n+1}-1)$ are all distinct modulo p^{n+1} , as desired. Indeed, if $0 \le i_1 < i_2 \le p^{n+1} - 1$, then either

$$i_2 \not\equiv i_1 \pmod{p^n}$$

in which case by the inductive hypothesis, we have that

$$f(i_1) \not\equiv f(i_2) \pmod{p^n}$$

and therefore, also

$$f(i_2) \not\equiv f(i_1) \pmod{p^{n+1}},$$

or $i_2 = i_1 + p^n j$ for some $1 \le j \le p - 1$ and then

$$f(i_2) \equiv f(i_1) + p^n j f'(i_1) \pmod{p^{n+1}}$$

and because p doesn't divide $f'(i_1)$ (nor divides j), then

$$f(i_2) \not\equiv f(i_1) \pmod{p^{n+1}}$$

Problem 4. Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ whose derivative is continuous with the property that for each rational number $\frac{a}{b}$, written in lowest terms (i.e., $a, b \in \mathbb{Z}$ with $b \in \mathbb{N}$ and gcd(a, b) = 1), we have that also $f\left(\frac{a}{b}\right)$ is a rational number whose denominator, when we write f(a/b) in lowest terms, is also equal to b.

Solution. Let $\frac{a}{b} \in \mathbb{Q}$ be a fraction in its lowest terms (so, gcd(a, b) = 1). We consider the limit:

$$L := \lim_{n \to \infty} \frac{f\left(\frac{a}{b} + \frac{1}{bn}\right) - f\left(\frac{a}{b}\right)}{\frac{1}{bn}}.$$

Clearly, since f is differentiable, then we have that $L = f'\left(\frac{a}{b}\right)$.

On the other hand, we claim that L must be an integer; here's why. We have that

$$\frac{a}{b} + \frac{1}{bn} = \frac{an+1}{bn}$$

is a rational number whose denominator (in lowest terms) is a divisor of bn. Therefore, due to our hypothesis, we have that there exists some integer k_n such that

$$f\left(\frac{a}{b} + \frac{1}{bn}\right) = \frac{k_n}{bn}$$

On the other hand, we already know (again due to our hypothesis) that there exists an integer ℓ such that

$$f\left(\frac{a}{b}\right) = \frac{\ell}{b},$$

which means that

$$\frac{f\left(\frac{a}{b}+\frac{1}{bn}\right)-f\left(\frac{a}{b}\right)}{\frac{1}{bn}}=\frac{\frac{k_n}{bn}-\frac{\ell}{b}}{\frac{1}{bn}}=k_n-n\ell\in\mathbb{Z}.$$

So, L is actually a limit of some integers; therefore, L itself must be an integer (and actually, it means that for all n sufficiently large, we have that $k_n - n\ell$ must be constant).

So, we have that for each rational number $q \in \mathbb{Q}$, $f'(q) \in \mathbb{Z}$. Now, since (by our hypothesis), f'(x) is a continuous function, then this means that f'(x) must be a constant function. Indeed, first of all, because each real number is the limit point of a sequence of rational numbers and $f'(q) \in \mathbb{Z}$ when $q \in \mathbb{Q}$, then this forces that for any $x_0 \in \mathbb{R}$,

$$f'(x_0) = \lim_{\substack{q \to x_0 \\ q \in \mathbb{Q}}} f'(q) \in \mathbb{Z}.$$

So, $f' : \mathbb{R} \longrightarrow \mathbb{Z}$ is a continuous function, which in particular, it means that it must satisfy the Intermediate Value Theorem. However f'(x) never takes values which are not integers; therefore, f'(x) cannot take two distinct integer values r < s (say) because then this would violate the Intermediate Value Theorem since f'(x) would never take the value $r + \frac{1}{2}$. So, f'(x) is constant (equal to some integer c), which means that

f(x) = cx + d for some given $c \in \mathbb{Z}$ and $d \in \mathbb{R}$.

Now, since $f(q) \in \mathbb{Q}$ whenever $q \in \mathbb{Q}$, then this means that $d \in \mathbb{Q}$. Moreover, because f(0) = d, applying our hypothesis to the rational number $\frac{0}{1}$ yields that d itself must be an integer number. We finally claim that c must be either equal to 1 or to -1.

Now, first of all, c cannot be equal to 0 because then $f(x) = d \in \mathbb{Z}$ and so, $f\left(\frac{1}{2}\right)$ would not be a fraction in its lowest terms with denominator equal to 2.

Second, if |c| > 1, then we consider

$$f\left(\frac{1}{2c}\right) = \frac{1}{2} + d$$

is a fraction in lowest terms with denominator equal to 2, thus contradicting our hypothesis (because it should have denominator equal to |2c| > 2). So, indeed, we need |c| = 1.

On the other hand, if f(x) = x + d or f(x) = -x + d, then clearly, our hypothesis is verified and we are done.