
PUTNAM PRACTICE SET 28: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. What is the maximum number of points in the cartesian plane whose
both coordinates are rational numbers, which lie on the same circle whose center is
not a point whose both coordinates are rational numbers?

Solution. Let (x0, y0) be the coordinates of the center of the circle and let (xi, yi)
for i = 1, . . . , ` be points with both coordinates rational numbers lying on our circle;
our goal is to find the largest value for `. We know that ` = 2 is possible since both
(−1, 0) and (1, 0) lie on the same circle centered at the point (0, α) for any α ∈ R.
We will show below that ` ≥ 3 is impossible.

So, assume ` ≥ 3; then we know that for each i = 1, . . . , `, we have that

(xi − x0)2 + (yi − y0)2 = (x1 − x0)2 + (y1 − y0)2.

This last equation simplifies to

(1) x2i + y2i − x21 − y21 = 2(xi − x1) · x0 + 2(yi − y1) · y0.

We know that noth both x0 and y0 are rational numbers; without loss of generality,
we may assume y0 /∈ Q.

Since not all 3 points (xi, yi) for i = 1, 2, 3 can lie on the same line, then we
cannot have that y1 = y2 = y3; so, without loss of generality, we assume y3 6= y1.
Using (1) for i = 3, we conclude that also x3 − x1 6= 0 since otherwise we would
derive a contradiction because the left hand side is given to be rational, while the
right hand wouldn’t be rational.

Now, similar to equation (1), we get

(2) x22 + y22 − x23 − y23 = 2(x2 − x3) · x0 + 2(y2 − y3) · y0.

So, either y2 − y3 6= 0 or y2 − y1 6= 0; again, without loss of generality, we may
assume y2−y1 6= 0. Therefore, arguing as before, we get x2−x1 6= 0; also, we have:

(3) (x2 − x1) · x0 + (y2 − y1) · y0 ∈ Q and (x3 − x1) · x0 + (y3 − y1) · y0 ∈ Q.

Now, if

(4)
y2 − y1
x2 − x1

6= y3 − y1
x3 − x1

,

then (3) yields that x0, y0 ∈ Q, which is a contradiction. So, we must have that

y3 − y1
x3 − x1

=
y2 − y1
x2 − x1

,

which means that the three points (x1, y1), (x2, y2) and (x3, y3) are on the same
line, contradicting that they are on the same circle. So, indeed we cannot have more
than 2 points with rational coordinates on the same circle whose center doesn’t have
rational coordinates.
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Problem 2. Let F0(x) = log(x) and for each n ≥ 1 and x > 0, we let

Fn(x) =

∫ x

0

Fn−1(t)dt.

Compute

lim
n→∞

n! · Fn(1)

ln(n)
.

Solution. We claim that for each n ≥ 1, we have that

Fn(x) =
xn

n!
·

(
log(x)−

n∑
k=1

1

k

)
.

The statement is easily seen to be true when n = 1 since - integrating by parts -
we obtain that F1(x) = x log(x)− x. (Here we also use implicitly the fact that

lim
x→0+

x log(x) = 0

and thus, more generally, for any positive integer m, we have that

lim
x→0+

xm log(x) = 0.

The above limits are easily computed using L’Hôpital’s Rule, for example.) Then,
inductively, we see that if

Fn(x) =
xn

n!
·

(
log(x)−

n∑
k=1

1

k

)
,

then computing Fn+1(x) (again using integration by parts and the above limit of
xm log(x) as x→ 0+), we get

Fn+1(x) =
xn+1

(n+ 1)!
· log(x)− xn+1

(n+ 1)! · (n+ 1)
− xn+1

(n+ 1)!
·

(
n∑

k=1

1

k

)
,

which delivers the desired formula for Fn+1(x) inductively. Therefore

n! · Fn(1) = −
n∑

k=1

1

k

and so, we are left to compute the limit

lim
n→∞

∑n
k=1

1
k

log(n)
.

Now, using the fact that the function x 7→ 1
x is decreasing for x ≥ 1, we see that∫ n+1

1

1

x
dx <

n∑
k=1

1

k
< 1 +

∫ n

1

1

x
dx

(after considering left, rspectively right Riemann sums for the integral of 1/x). So,
this means that

log(n+ 1) <

n∑
k=1

1

k
< 1 + log(n)

and therefore, using the Squeeze Theorem, we conclude that

lim
n→∞

n! · Fn(1)

log(n)
= − lim

n→∞

∑n
k=1

1
k

log(n)
= −1.
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Problem 3. Let p be a prime number and let f ∈ Z[x]. Assume that the integers
f(k) for 0 ≤ k ≤ p2− 1 are all distinct modulo p2. Then prove that for each n ∈ N,
the integers f(k) for 0 ≤ k ≤ pn − 1 are distinct modulo pn.

Solution. First of all, we know that if

x ≡ y (mod m) then f(x) ≡ f(y) (mod m)

for any integers x, y,m. In particular, this means that

f(k + pj) ≡ f(k) (mod p) for each k, j = 0, . . . , p− 1.

On the other hand, a simple computation shows that

f(k + pj) ≡ f(k) + pjf ′(k) (mod p2) for k, j = 0, . . . , p− 1.

Since the numbers f(k+ pj) are distinct modulo p2, then this means that actually
f ′(k) is not divisible by p (for each k = 0, . . . , p− 1).

Now, we prove inductively on n that the numbers f(0), . . . , f(pn − 1) are all
distinct modulo pn; the statement for n = 1, 2 is already the hypothesis in our
problem. So, we assume that f(0), . . . , f(pn − 1) are distinct modulo pn (for some
n ≥ 2) and we prove that f(0), . . . , f(pn+1 − 1) are distinct modulo pn+1.

We have that for each ` ∈ {0, . . . , pn − 1},

f ′(`) 6≡ 0 (mod p)

because each f ′(`) is congruent with some f ′(k) modulo p where ` ≡ k (mod p)
and we know that for k ∈ {0, . . . , p− 1}, we have that

f ′(k) 6≡ 0 (mod p).

Now, since each f(`) are distinct modulo pn for ` = 0, . . . , pn−1, in order to obtain
the inductive conclusion, all we need to show is that for each j ∈ {0, . . . , p − 1},
the numbers f(`+ jpn) are distinct modulo pn+1. But using the same computation
as before (which is essentially a Taylor expansion around x = `, or alternatively
obtained from expanding each monomial from f(`+ jpn)), we have that

f(`+ jpn) ≡ f(`) + jpnf ′(`) (mod pn+1).

Since p doesn’t divide f ′(`), then as we vary j ∈ {0, . . . , p− 1}, we obtain distinct
residue classes modulo pn+1 for the numbers f(`+ jpn), therefore showing that the
integers f(0), . . . , f(pn+1 − 1) are all distinct modulo pn+1, as desired. Indeed, if
0 ≤ i1 < i2 ≤ pn+1 − 1, then either

i2 6≡ i1 (mod pn),

in which case by the inductive hypothesis, we have that

f(i1) 6≡ f(i2) (mod pn)

and therefore, also

f(i2) 6≡ f(i1) (mod pn+1),

or i2 = i1 + pnj for some 1 ≤ j ≤ p− 1 and then

f(i2) ≡ f(i1) + pnjf ′(i1) (mod pn+1)

and because p doesn’t divide f ′(i1) (nor divides j), then

f(i2) 6≡ f(i1) (mod pn+1).
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Problem 4. Find all functions f : R −→ R whose derivative is continuous with
the property that for each rational number a

b , written in lowest terms (i.e., a, b ∈ Z
with b ∈ N and gcd(a, b) = 1), we have that also f

(
a
b

)
is a rational number whose

denominator, when we write f(a/b) in lowest terms, is also equal to b.

Solution. Let a
b ∈ Q be a fraction in its lowest terms (so, gcd(a, b) = 1). We

consider the limit:

L := lim
n→∞

f
(
a
b + 1

bn

)
− f

(
a
b

)
1
bn

.

Clearly, since f is differentiable, then we have that L = f ′
(
a
b

)
.

On the other hand, we claim that L must be an integer; here’s why. We have
that

a

b
+

1

bn
=
an+ 1

bn
is a rational number whose denominator (in lowest terms) is a divisor of bn. There-
fore, due to our hypothesis, we have that there exists some integer kn such that

f

(
a

b
+

1

bn

)
=
kn
bn
.

On the other hand, we already know (again due to our hypothesis) that there exists
an integer ` such that

f
(a
b

)
=
`

b
,

which means that

f
(
a
b + 1

bn

)
− f

(
a
b

)
1
bn

=
kn

bn −
`
b

1
bn

= kn − n` ∈ Z.

So, L is actually a limit of some integers; therefore, L itself must be an integer (and
actually, it means that for all n sufficiently large, we have that kn − n` must be
constant).

So, we have that for each rational number q ∈ Q, f ′(q) ∈ Z. Now, since (by our
hypothesis), f ′(x) is a continuous function, then this means that f ′(x) must be a
constant function. Indeed, first of all, because each real number is the limit point
of a sequence of rational numbers and f ′(q) ∈ Z when q ∈ Q, then this forces that
for any x0 ∈ R,

f ′(x0) = lim
q→x0
q∈Q

f ′(q) ∈ Z.

So, f ′ : R −→ Z is a continuous function, which in particular, it means that it must
satisfy the Intermediate Value Theorem. However f ′(x) never takes values which
are not integers; therefore, f ′(x) cannot take two distinct integer values r < s (say)
because then this would violate the Intermediate Value Theorem since f ′(x) would
never take the value r + 1

2 . So, f ′(x) is constant (equal to some integer c), which
means that

f(x) = cx+ d for some given c ∈ Z and d ∈ R.
Now, since f(q) ∈ Q whenever q ∈ Q, then this means that d ∈ Q. Moreover,
because f(0) = d, applying our hypothesis to the rational number 0

1 yields that d
itself must be an integer number. We finally claim that c must be either equal to
1 or to −1.

Now, first of all, c cannot be equal to 0 because then f(x) = d ∈ Z and so, f
(
1
2

)
would not be a fraction in its lowest terms with denominator equal to 2.
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Second, if |c| > 1, then we consider

f

(
1

2c

)
=

1

2
+ d

is a fraction in lowest terms with denominator equal to 2, thus contradicting our
hypothesis (because it should have denominator equal to |2c| > 2). So, indeed, we
need |c| = 1.

On the other hand, if f(x) = x+d or f(x) = −x+d, then clearly, our hypothesis
is verified and we are done.


