PUTNAM PRACTICE SET 26: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be the sequence given by

$$
a_{1}=1 \text { and } a_{n+1}=3 a_{n}+\left[\sqrt{5} \cdot a_{n}\right] \text { for } n \geq 1
$$

Compute a_{2021}.
Solution. We see that

$$
a_{n+1}-3 a_{n}=\left[\sqrt{5} \cdot a_{n}\right]<\sqrt{5} a_{n}<\left[\sqrt{5} a_{n}\right]+1=a_{n+1}-3 a_{n}+1
$$

So,

$$
(3+\sqrt{5}) a_{n}-1<a_{n+1}<(3+\sqrt{5}) a_{n}
$$

and thus, after multiplying by $3-\sqrt{5}$,

$$
4 a_{n}-3+\sqrt{5}<(3-\sqrt{5}) a_{n+1}<4 a_{n}
$$

which leads us to the following inequalities:

$$
3 a_{n+1}-4 a_{n}<\sqrt{5} a_{n+1}<3 a_{n+1}-4 a_{n}+3-\sqrt{5}
$$

Finally, since $0<3-\sqrt{5}<1$ and the elements of our sequence are integers, we conclude that

$$
\left[\sqrt{5} a_{n+1}\right]=3 a_{n+1}-4 a_{n}
$$

This means that

$$
3 a_{n}-4 a_{n-1}=\left[\sqrt{5} a_{n}\right]=a_{n+1}-3 a_{n}
$$

for all $n \geq 2$. So, we have that our sequence satisfies the following linear recurrence relation:

$$
a_{n+1}-6 a_{n}+4 a_{n-1}=0
$$

which means that the characteristic roots of our linear recurrence sequence are

$$
3+\sqrt{5} \text { and } 3-\sqrt{5}
$$

and since $a_{1}=1$ and $a_{2}=5$, we get that

$$
a_{n}=\frac{\sqrt{5}+1}{8 \sqrt{5}} \cdot(3+\sqrt{5})^{n}+\frac{\sqrt{5}-1}{8 \sqrt{5}} \cdot(3-\sqrt{5})^{n}
$$

which happens to be precisely

$$
a_{n}=2^{n-2} \cdot F_{2 n+1}
$$

where $\left\{F_{k}\right\}_{k \geq 1}$ is the Fibonacci sequence given by

$$
F_{1}=F_{2}=1 \text { and } F_{k+2}=F_{k+1}+F_{k} \text { for } k \geq 1
$$

Problem 2. Let $n \in \mathbb{N}$. Find the number of pairs of polynomials $(P(x), Q(x)) \in$ $\mathbb{R}[x] \times \mathbb{R}[x]$ satisfying the following two conditions:

- $\operatorname{deg}(P)>\operatorname{deg}(Q)$; and
- $P^{2}(x)+Q^{2}(x)=x^{2 n}+1$.

Solution. Since $\operatorname{deg}(P)>\operatorname{deg}(Q)$, then the square of the leading coefficient of $P(x)$ equals 1 , which means that we have two possibilities: either the leading coefficient of $P(x)$ equals 1 , or it equals -1 . Now, if $(P(x), Q(x))$ is a solution, then also $(-P(x), Q(x))$ is a solution, which means that we may as well compute the number of pairs of polynomials $(P(x), Q(x))$ satisfying the given two condition and also for which $P(x)$ is a monic polynomial, and then simply double that number of pairs.

Also, we note that $\operatorname{deg}(P)=n$ since $\operatorname{deg}(P)>\operatorname{deg}(Q)$ and $\operatorname{deg}\left(P^{2}+Q^{2}\right)=2 n$. So, noting that we assumed $P(x)$ is monic, then we notice the following factorization:

$$
\begin{gathered}
(P(x)+i Q(x)) \cdot(P(x)-i Q(x))= \\
\prod_{j=1}^{n}\left(x+\cos \left(\frac{(2 j+1) \pi}{2 n}\right)+i \cdot \sin \left(\frac{(2 j+1) \pi}{2 n}\right)\right) \cdot\left(x+\cos \left(\frac{(2 j+1) \pi}{2 n}\right)-i \cdot \sin \left(\frac{(2 j+1) \pi}{2 n}\right)\right)
\end{gathered}
$$

So, $P(x)+i Q(x)$ and $P(x)-i Q(x)$ are polynomials which are complex conjugates of each other and so, $P(x)+i Q(x)$ is a polynomial of degree n, which is a product of n parenthesis from the right hand side of the above factorization, where each parenthesis belongs to precisely one of the two possibilities
$x+\cos \left(\frac{2 \pi(2 j+1)}{4 n}\right)+i \cdot \sin \left(\frac{2 \pi(2 j+1)}{4 n}\right)$ or $x+\cos \left(\frac{2 \pi(2 j+1)}{4 n}\right)+i \cdot \sin \left(\frac{2 \pi(2 j+1)}{4 n}\right)$
for each $j=1, \ldots, n$. In conclusion, there are 2^{n} such possibilities for $P(x)+i Q(x)$ (and for each one of them, $P(x)-i Q(x)$ is uniquely determined as a product of the remaining n parenthesis from the left hand side of the above factorization), which means there are 2^{n} pairs of polynomials $(P(x), Q(X))$ such as above with $P(x)$ monic. (Note that $(P(x), Q(x))$ is uniquely determined by the pair $(P(x)+i Q(x), P(x)-i Q(x))$.) Therefore, overall, there are $2 \cdot 2^{n}=2^{n+1}$ possible pairs of polynomials as desired.

Problem 3. Let $k \in \mathbb{N}$. Prove that there exist polynomials $P_{0}, P_{1}, \ldots, P_{k-1}$ (which may depend on k) with the property that for each $n \in \mathbb{N}$, we have

$$
\left[\frac{n}{k}\right]^{k}=P_{0}(n)+P_{1}(n) \cdot\left[\frac{n}{k}\right]+P_{2}(n) \cdot\left[\frac{n}{k}\right]^{2}+\cdots+P_{k-1}(n) \cdot\left[\frac{n}{k}\right]^{k-1}
$$

where (as always) $[x]$ is the integer part of the real number x.
Solution. For each integer n, we have that

$$
\left[\frac{n}{k}\right]=\frac{n-j}{k}
$$

for some integer $j \in\{0,1, \ldots, k-1\}$. So, this means that for each $n \in \mathbb{Z}$, we have that

$$
\left(\left[\frac{n}{k}\right]-\frac{n}{k}\right) \cdot\left(\left[\frac{n}{k}\right]-\frac{n-1}{k}\right) \cdots \cdot\left(\left[\frac{n}{k}\right]-\frac{n-(k-1)}{k}\right)=0
$$

So, simply expanding the above identity and grouping terms containing the same power of $\left[\frac{n}{k}\right]$ leads to the construction of the polynomials $P_{0}, P_{1}, \ldots, P_{k-1}$ as desired.

Problem 4. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ with the property that

$$
f(x, y)+f(y, z)+f(z, x)=0
$$

for all real numbers x, y and z. Prove that there must exist another function $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x, y)=g(x)-g(y)
$$

for all real numbers x and y.
Solution. First we substitute: $x=y=z=0$ in our functional identity and notice then that $f(0,0)=0$. Next we substitute $y=z=0$ and obtain that

$$
f(0, x)=-f(x, 0)
$$

Finally, substituting $z=0$ and letting x and y arbitrary, we obtain

$$
\begin{gathered}
f(x, y)+f(y, 0)+f(0, x)=0 \text {, i.e. } \\
f(x, y)=-f(0, x)-f(y, 0)=f(x, 0)-f(y, 0)
\end{gathered}
$$

thus proving that the function $g: \mathbb{R} \longrightarrow \mathbb{R}$ given by $g(x):=f(x, 0)$ satisfies the desired property for our conclusion.

