
PUTNAM PRACTICE SET 25: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Let n ∈ N and let a1, . . . , an ∈ R. Show that there exists an integer
m and some nonempty subset S ⊆ {1, . . . , n} with the property that∣∣∣∣∣m+

∑
i∈S

ai

∣∣∣∣∣ ≤ 1

n+ 1
.

Solution. We consider the fractional parts {·} of the following numbers:

sk :=

k∑
i=1

ai for k = 1, . . . , n.

Case 1. There exists 1 ≤ i < j ≤ n such that

|{sj} − {si}| ≤
1

n+ 1
.

In this case, writing sj = {sj} + mj and si = {si} + mi for some integers mi and
mj (actually their respective integer parts [·]), then we get:

|sj −mj − (si −mi)| ≤
1

n+ 1
,

which means that ∣∣∣∣∣∣
∑
i<k≤j

ak − (mj −mi)

∣∣∣∣∣∣ ≤ 1

n+ 1
.

So, letting m := mi −mj , then we obtain the desired conclusion.
Case 2. For each i 6= j, we have that

|{sj} − {si}| >
1

n+ 1
.

In this case, ordering the n fractional parts {sk} for 1 ≤ k ≤ n, we see that they
live in [0, 1) and the distance between any two of them is greater than 1

n+1 , which
means that:

• either {si0} ≤ 1
n+1 , where {si0} is the smallest of the above fractional

parts, in which case, the conclusion follows easily (we simply take S =
{1, . . . , i0} and m = − [si0 ]).
• or 1−{sj0} < 1

n+1 , where {sj0} is the largest of the above fractional parts.

In this case, we take S = {1, . . . , j0} and m = −1 − [sj0 ] and still obtain
the desired conclusion.

Problem 2. For each continuous function f : [0, 1] −→ R, let

I(f) :=

∫ 1

0

x2f(x)dx−
∫ 1

0

xf(x)2dx.

1
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Find the maximum of I(f) over all possible continuous functions f .

Solution. We compute

I(f) =

∫ 1

0

(
x2f(x)− xf2(x)

)
dx =

∫ 1

0

x·
(
xf(x)− f2(x)

)
dx =

∫ 1

0

x·
(
−x

2

4
+ xf(x)− f2(x)

)
+
x3

4
dx

and since
x2

4
− xf(x) + f2(x) =

(x
2
− f(x)

)2
≥ 0,

we see that

I(f) ≤
∫ 1

0

x3

4
dx =

1

16
.

The maximum 1
16 is attained when f(x) = x

2 (which is a continuous function).

Problem 3. Let c be a real number greater than 1 and let g ∈ R[x] be a non-
constant polynomial with the property that there exists an infinite sequence {kn} ⊆
N with the property that for each n ≥ 1, we have that there exists some `n ∈ N
with the property that

g
(
ckn
)

= c`n .

Find all such polynomials g.

Solution. Let d ≥ 1 be the degree of the polynomial g(x) and also, let A be the
leading coefficient of g. We consider the following limit:

L := lim
n→∞

g
(
ckn
)

cd·kn
.

From basic calculus, it’s clear that L = A since ckn → ∞ as n → ∞ (note that
c > 1). On the other hand, we have that

L = lim
n→∞

c`n−dkn

and so, the limit L exists and is nonzero if and only if there exists some integer b
such that for all n sufficiently large, we have that

(1) `n − dkn = b

(note that c > 1 and so, powers of c won’t accumulate near a nonzero real number).
Hence A = cb, but moreover, using also (1), we have that for each xn := ckn , where
n is sufficiently large,

g(xn) = Axdn.

So, the polynomial h(x) := g(x)−Axd vanishes at each point xn (for n sufficiently
large) thus showing that h must be identically equal to 0 (again note that the points
xn are distinct because c > 1). So, always we have that

g(x) = cb · xd for some b ∈ Z.

Problem 4. Let f : [0, 1] −→ R be a function whose derivative is continuous,

which also satisfies
∫ 1

0
f(x)dx = 0. Prove that for each α ∈ (0, 1) we have∣∣∣∣∫ α

0

f(x)dx

∣∣∣∣ ≤ 1

8
· max
0≤x≤1

|f ′(x)|.
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Solution. We define the function g : [0, 1] −→ R given by

g(x) :=

∫ y

0

f(y)dy.

Then g(0) = g(1) = 0 and clearly, g(x) is a function whose derivative (which is
f(x)) is continuous. So, there exists a point - call it α - inside the interval (0, 1)
with the property that ∣∣∣∣∫ α

0

f(x)dx

∣∣∣∣ is the largest.

Then x = α is a critical point for the function g and thus,

0 = g′(α) = f(α).

So, since the maximum is attained at x = α, it suffices to prove that∣∣∣∣∫ α

0

f(x)dx

∣∣∣∣ ≤ M

8
,

where M := max0≤x≤1 |f ′(x)|.
We may assume that α ≤ 1

2 since otherwise we may replace f(x) by f(1 − x)
which leaves our hypotheses unchanged, while M would still be unchanged and
also,

max
0≤y≤1

∣∣∣∣∫ y

0

f(x)dx

∣∣∣∣
would be unchanged, but this time α would be replaced by 1 − α. So, from now
on, we assume α ≤ 1

2 .
Without loss of generality, we may assume that∫ α

0

f(x)dx > 0

since otherwise we could just replace f(x) by −f(x) and still prove the same con-
clusion.

Now, because f(α) = 0 and f ′(x) ≥ −M , we conclude that

f(x) ≤M(α− x) for each 0 ≤ x ≤ α.
So, since we also argued that we may assume that α ≤ 1

2 , then we have:∣∣∣∣∫ α

0

f(x)dx

∣∣∣∣ =

∫ α

0

f(x)dx ≤
∫ α

0

M(α− x)dx =
Mα2

2
≤ M

8
.


