
PUTNAM PRACTICE SET 24: SOLUTIONS

PROF. DRAGOS GHIOCA

Problem 1. Find a polynomial P (x, y) ∈ R[x, y] with the property that for each
real number r, we have

P ([r], [2r]) = 0,

where [x] is always the integer part of the real number x (i.e., the largest integer
less than or equal to x).

Solution. We let

P (x, y) = (y − 2x) · (y − 2x− 1)

and note that for each real number r, we have that

either [2r] = 2 · [r], or [2r] = 2[r] + 1,

which means that P ([r], [2r]) = 0 for each r ∈ R.

Problem 2. Show that the curve in the cartesian plane given by the equation:

x3 + 3xy + y3 = 1

contains exactly one set of three points A, B and C which are the vertices of an
equilateral triangle.

Solution. The whole key to this problem is the following factorization:

x3 + y3 + 3xy − 1 = (x+ y − 1)(x2 + y2 + 1− xy + x+ y)

which comes from the identity:

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx).

Now, using the fact that

x2 + y2 + 1− xy + x+ y =
1

2
· (x− y)2 +

1

2
· (x+ 1)2 +

1

2
· (y + 1)2,

we get that besides the line x+y = 1, the given plane curve contains only the point
(−1,−1). So, indeed, there is only one triple of points on the given curve which are
the vertices of an equilateral triangle; one of those three points must be (−1,−1),
while the other two points lie on the line x+ y = 1 being exactly 1√

3
·h units apart

from the point
(
1
2 ,

1
2

)
, which is the foot of the perpendicular line from (−1,−1) to

the line x + y = 1, where h is the length of the height from (−1,−1) to this line,
i.e.,

h =
√

2 · 3

2
.

So, the other two vertices of the equilateral triangle are(
1 +
√

3

2
,

1−
√

3

2

)
and

(
1−
√

3

2
,

1 +
√

3

2

)
.
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Problem 3. Let {an}n∈N be a sequence of integers satisfying the two properties:

ai = i for i = 1, . . . , 2020 and an = an−1 + an−2020 for n ≥ 2021.

Show that for each positive integer M , there exists some integer k > M+2020 such
that each one of the integers ak, . . . , ak+2018 are divisible by M .

Solution. We extend the definition of the sequence {an} for all n ∈ Z simply by
enforcing the condition

an = an−1 + an−2020

for all n ∈ Z. Note that we can solve for a0 from

a2020 = a2019 + a0

and get a0 = 1. Similarly, we solve for a−1 from

a2019 = a2018 + a−1

and get a−1 = 1. Furthermore, a−k = 1 for each k ∈ {0, 1, . . . , 2018}. Then we
have a−2019 = 0 because

a1 = a0 + a−2019

and a1 = a0 = 1. Continuing to solve backwards, we get

a−k = 0 for k = 2019, 2020, . . . , 4037.

For example, note that
a−2017 = a−2018 + a−4037

and a−2017 = a−2018 = 1.
Therefore, there exist 2019 consecutive integers in our recurrence sequence, all

of them equal to 0.
On the other hand, for any given positive integer M , any recurrence sequence is

eventually periodic modulo M . Furthermore, since for our sequence we can solve
also backwards (as shown above), the sequence is actually periodic modulo M .
(The same trick can be applied to the Fibonacci sequence, for example,
to show that for any integer M there exist infinitely many terms in the
Fibonacci sequence all of them divisible by M .)

So, since at one point we had 2019 consecutive integers in our sequence all
divisible by M (simply because those integers are all equal to 0), then we can find
such consecutive integers divisible by M in our sequence with indices arbitrarily
large.

Just to give more details to our reasoning: first of all, since there exist finitely
many residue classes modulo M (for any given positive integer M), there must exist
two distinct tuples of 2020 consecutive elements in our sequence which give us the
same residue classes modulo M . So, there exist two distinct 2020 consecutive tuples
of elements in our sequence

(ak, ak+1, . . . , ak+2019) and (a`, a`+1, . . . , a`+2019)

such that ak+i ≡ a`+i (mod M) for each i = 0, 1, . . . , 2019, then our linear recur-
rence formula yields that

ak+2020 ≡ ak+2019 + ak ≡ a`+2019 + a` ≡ a`+2020 (mod M)

and more generally, inductively, we get that for each nonnengative integer i, we
have that

ak+i ≡ a`+i (mod M).
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But also, going backwards, we have

ak−1 ≡ ak+2019 − ak+2018 ≡ a`+2019 − a`+2018 ≡ a`−1 (mod M)

and then also, for all i ∈ N, we have

ak−i ≡ a`−i (mod M),

thus showing that our linear recurrence sequence is periodic modulo M . Since at one
moment (for the indices k = −2019,−2020, . . . ,−4037) we have 2019 consecutive
integers in our sequence all divisible by M (since in that case, they’re all equal to
0), then the same phenomenon repeats infinitely often, i.e., there exist arbitrarily
large positive integers k such that ak, ak+1, . . . , ak+2018 are all divisible by M , as
desired.

Problem 4. Let n be a positive integer and let θ ∈ R such that θ/π is an irrational
number. For each k = 1, . . . , n, we let

ak = tan

(
θ +

kπ

n

)
.

Compute a1+a2+···+an
a1·a2·····an .

Solution. We let

ω := e2θn·i = cos(2nθ) + i sin(2nθ).

For the polynomial

P (x) = (1 + ix)n − ω · (1− ix)n,

we compute for each k = 1, . . . , n that

P (ak) =

(
cos
(
θ + kπ

n

)
+ i sin

(
θ + kπ

n

)
cos
(
θ + kπ

n

) )n
− ω ·

(
cos
(
θ + kπ

n

)
− i sin

(
θ + kπ

n

)
cos
(
θ + kπ

n

) )n
and so, letting

εk := e(nθ+kπ)·i,

we see that

P (ak) =
εk − ω · ε̄k

cosn
(
θ + kπ

n

) = 0

because
εk
ε̄k

= e2nθ·i = ω.

In conclusion, the polynomial P (z) vanishes at each point ak for k = 1, . . . , n and
since it also has degree n and leading coefficient equal to

cn := in − ω · (−i)n,

we conclude that

P (z) = cn ·
n∏
k=1

(z − ak).

So, ∑n
k=1 ak∏n
k=1 ak

=
−cn−1

(−1)nc0
,

where we write

P (z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0.
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Clearly,

c0 = 1− ω and cn−1 = nin−1 − ω · n(−1)n−1in−1 = nin−1 · (1 + ω(−1)n) ,

which means that ∑n
k=1 ak∏n
k=1 ak

=
1 + ω(−1)n

1− ω
· n(−i)n−1.

As a fun fact, if n is odd, then the above quotient is always an integer
because then 1 + ω(−1)n = 1− ω.


