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PROF. DRAGOS GHIOCA

Problem 1. Show that each positive integer can be written as a sum of integers
of the form 2a · 3b (for nonnegative integers a and b) with the property that no
interger from the chosen sum divides a different integer from the sum.

Solution. We proceed by induction on the integer n ≥ 1 which we want to
express as a sum of integers of the form 2a · 3b; clearly, the statement holds for
n ∈ {1, 2, 3}. Now, we assume the statement holds for all integers less than some
number N (greater than 3) and next we show the same conclusion holds for N .

Now, if N is even, then we simply note that by our inductive hypothesis, the
integer N

2 can be written as a sum of integers si of the form 2a · 3b (none of those
integers dividing a different integer from the same sum) and so, N is the sum of
the corresponding integers 2si (with the same property).

Next, if N is odd, then we let m be the largest positive integer with the property
that 3m ≤ N < 3m+1. We let

k :=
N − 3m

2
;

clearly, if k = 0 then n = 3m and we are done. So, from now on, we assume 1 ≤ k;
also, clearly, k < N . Now, by the induction hypothesis, we can write

k =
∑̀
i=1

2ai3bi ,

with ai, bi ≥ 0 and moreover, no integer from the above sum divides another one
of those ` integers from our sum. We write then

N = 3m +
∑̀
i=1

2ai+13bi

and we show next that no integer in the above sum divides a different integer from
the above sum of `+1 integers. Now, clearly no integer of the form 2ai+13bi divides
another integer of the same form (by our inductive hypothesis) and also, it cannot
divide 3m (since ai + 1 ≥ 1). So, the only possible obstruction to our desired
conclusion would be if

3m | 2ai+13bi

for some 1 ≤ i ≤ `, i.e., if m ≤ bi. But then that would mean that k ≥ 2ai3bi ≥ 3m,
i.e.,

3m ≤ N − 3m

2

which means that N ≥ 3m+1, contradiction. This concludes our proof.
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Problem 2. Let n ∈ N and let P ∈ C[z] be a polynomial of degree 2n, all of
whose roots have absolute value equal to 1. Let

g(z) :=
P (z)

zn
.

Prove that each solution for g′(z) = 0 (where g′ is the derivative of g) has absolute
value equal to 1.

Solution. We let ω1, . . . , ω2n be all the roots of P (z) (we allow for the possibility
that some ωi = ωj for i 6= j). We know that |ωi| = 1 for each i = 1, . . . , 2n. Now, if
one of the solutions z0 to the equation g′(z) = 0 is among the ωi, then clearly also
|z0| = 1, as desired.

We have that g′(z) = 0 precisely when

P ′(z) · zn − nzn−1 · P (z) = 0

and z 6= 0 (note that g(z) = P (z)/zn and so, because P (0) 6= 0 because ωi 6= 0,
then we cannot have that g and therefore g′ is not defined at z = 0).

We let z0 be a solution to the above equation and also assume P (z0) 6= 0 (due
to our assumption that z 6= ωi for i = 1, . . . , 2n because otherwise we would au-
tomatically have |z0| = 1), then we can divide by zn−10 · P (z0) and thus we get
that

z0 ·
P ′(z0)

P (z0)
− n = 0.

An easy computation (using the product rule!) shows that

P ′(z0)

P (z0)
=

2n∑
i=1

1

z0 − ωi
.

So, after doubling the above equation, we get

(1) 0 =

(
2n∑
i=1

2z0
z0 − ωi

)
− 2n =

2n∑
i=1

(
2z0

z0 − ωi
− 1

)
=

2n∑
i=1

z0 + ωi
z0 − ωi

.

(Also, note that we assumed each z − ωi is nonzero.)
After multiplying each fraction by z̄0 − ω̄i and noting that ωi · ω̄i = 1, we get

0 =

2n∑
i=1

|z0|2 − 1 + (z̄0ωi − z0ω̄i)
|z0 − ωi|2

.

But z̄0ωi− z0ω̄i is always of the form i · y for some real number y (i.e., it’s a purely
imaginary number, it has no real part). So, then taking the real part of the right
hand side of (1) yields

0 =

2n∑
i=1

|z0|2 − 1

|z0 − ωi|2
=
(
|z0|2 − 1

)
·

2n∑
i=1

1

|z0 − ωi|2
,

which forces |z0| = 1 because the above sum from the right hand side is always
positive.

Problem 3. Let A be an N -by-N matrix with the property that each one of its
entries is equal to 1 or −1 and also satisfying that A · At = N · idN (where idN is
the N -by-N identity matrix). Assume there exists an a-by-b submatrix of A whose
entries are all equal to 1. Prove that ab ≤ N .
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Solution. We let v1, . . . , va be the a rows in the matrix A with the property that
the a-by-b submatrix containing only the entries equal to 1 is part of the a-by-N
submatrix of A formed by the rows v1, . . . , va. We let

w :=

a∑
i=1

vi

and denote by |w|2 = w · wt the length of this vector. We compute

w · wt =

(
a∑
i=1

vi

)
·

 a∑
j=1

vti

 =
∑

1≤i,j≤a

vi · vtj .

Finally, noting that vi · vtj = 0 for i 6= j, while

vi · vti = N for each i = 1, . . . , a,

we get |w|2 = N · a. On the other hand, we know that the vector w contains b
entries each one of them equal to a. Therefore,

|w|2 ≥ b · a2,
which combined with the fact that |w|2 = Na yields the desired inequality ab ≤ N .

Problem 4. Evaluate ∫ 1

0

ln(x+ 1)

x2 + 1
dx

Solution. We make the substitution x = tan(t) and so, dx = sec2(t) · dt, while
the bounds of integration change to t = 0 and t = π

4 and so, our integral I equals
now∫ π

4

0

ln(tan(t) + 1)

tan2(t) + 1
·sec2(t)dt =

∫ π
4

0

ln(tan(t)+1)dt =

∫ π
4

0

ln(sin(t)+cos(t))−ln(cos(t))dt

Now, we use the identity

sin(t) + cos(t) = cos
(π

2
− t
)

+ cos(t) = 2 cos
(π

4

)
cos
(π

4
− t
)

=
√

2 · cos
(π

4
− t
)

and so, we get that our integral I equals∫ π
4

0

ln(
√

2)+ln
(

cos
(π

4
− t
))
−cos(t)dt =

π

4
·ln(
√

2)+

∫ π
4

t=0

ln
(

cos
(π

4
− t
))

dt−
∫ π

4

t=0

ln(cos(t))dt.

On the other hand, using the substitution t = π
4 − u, we get that∫ π

4

0

ln
(

cos
(π

4
− t
))

dt =

∫ π
4

0

ln(cos(u))du

and so, our integral I equals

π

4
· ln(
√

2) =
π ln(2)

8
.


