PUTNAM PRACTICE SET 23

PROF. DRAGOS GHIOCA

Problem 1. Show that each positive integer can be written as a sum of integers of the form $2^{a} \cdot 3^{b}$ (for nonnegative integers a and b) with the property that no interger from the chosen sum divides a different integer from the sum.

Solution. We proceed by induction on the integer $n \geq 1$ which we want to express as a sum of integers of the form $2^{a} \cdot 3^{b}$; clearly, the statement holds for $n \in\{1,2,3\}$. Now, we assume the statement holds for all integers less than some number N (greater than 3) and next we show the same conclusion holds for N.

Now, if N is even, then we simply note that by our inductive hypothesis, the integer $\frac{N}{2}$ can be written as a sum of integers s_{i} of the form $2^{a} \cdot 3^{b}$ (none of those integers dividing a different integer from the same sum) and so, N is the sum of the corresponding integers $2 s_{i}$ (with the same property).

Next, if N is odd, then we let m be the largest positive integer with the property that $3^{m} \leq N<3^{m+1}$. We let

$$
k:=\frac{N-3^{m}}{2}
$$

clearly, if $k=0$ then $n=3^{m}$ and we are done. So, from now on, we assume $1 \leq k$; also, clearly, $k<N$. Now, by the induction hypothesis, we can write

$$
k=\sum_{i=1}^{\ell} 2^{a_{i}} 3^{b_{i}}
$$

with $a_{i}, b_{i} \geq 0$ and moreover, no integer from the above sum divides another one of those ℓ integers from our sum. We write then

$$
N=3^{m}+\sum_{i=1}^{\ell} 2^{a_{i}+1} 3^{b_{i}}
$$

and we show next that no integer in the above sum divides a different integer from the above sum of $\ell+1$ integers. Now, clearly no integer of the form $2^{a_{i}+1} 3^{b_{i}}$ divides another integer of the same form (by our inductive hypothesis) and also, it cannot divide 3^{m} (since $a_{i}+1 \geq 1$). So, the only possible obstruction to our desired conclusion would be if

$$
3^{m} \mid 2^{a_{i}+1} 3^{b_{i}}
$$

for some $1 \leq i \leq \ell$, i.e., if $m \leq b_{i}$. But then that would mean that $k \geq 2^{a_{i}} 3^{b_{i}} \geq 3^{m}$, i.e.,

$$
3^{m} \leq \frac{N-3^{m}}{2}
$$

which means that $N \geq 3^{m+1}$, contradiction. This concludes our proof.

Problem 2. Let $n \in \mathbb{N}$ and let $P \in \mathbb{C}[z]$ be a polynomial of degree $2 n$, all of whose roots have absolute value equal to 1 . Let

$$
g(z):=\frac{P(z)}{z^{n}} .
$$

Prove that each solution for $g^{\prime}(z)=0$ (where g^{\prime} is the derivative of g) has absolute value equal to 1 .

Solution. We let $\omega_{1}, \ldots, \omega_{2 n}$ be all the roots of $P(z)$ (we allow for the possibility that some $\omega_{i}=\omega_{j}$ for $i \neq j$). We know that $\left|\omega_{i}\right|=1$ for each $i=1, \ldots, 2 n$. Now, if one of the solutions z_{0} to the equation $g^{\prime}(z)=0$ is among the ω_{i}, then clearly also $\left|z_{0}\right|=1$, as desired.

We have that $g^{\prime}(z)=0$ precisely when

$$
P^{\prime}(z) \cdot z^{n}-n z^{n-1} \cdot P(z)=0
$$

and $z \neq 0$ (note that $g(z)=P(z) / z^{n}$ and so, because $P(0) \neq 0$ because $\omega_{i} \neq 0$, then we cannot have that g and therefore g^{\prime} is not defined at $z=0$).

We let z_{0} be a solution to the above equation and also assume $P\left(z_{0}\right) \neq 0$ (due to our assumption that $z \neq \omega_{i}$ for $i=1, \ldots, 2 n$ because otherwise we would automatically have $\left|z_{0}\right|=1$), then we can divide by $z_{0}^{n-1} \cdot P\left(z_{0}\right)$ and thus we get that

$$
z_{0} \cdot \frac{P^{\prime}\left(z_{0}\right)}{P\left(z_{0}\right)}-n=0 .
$$

An easy computation (using the product rule!) shows that

$$
\frac{P^{\prime}\left(z_{0}\right)}{P\left(z_{0}\right)}=\sum_{i=1}^{2 n} \frac{1}{z_{0}-\omega_{i}}
$$

So, after doubling the above equation, we get

$$
\begin{equation*}
0=\left(\sum_{i=1}^{2 n} \frac{2 z_{0}}{z_{0}-\omega_{i}}\right)-2 n=\sum_{i=1}^{2 n}\left(\frac{2 z_{0}}{z_{0}-\omega_{i}}-1\right)=\sum_{i=1}^{2 n} \frac{z_{0}+\omega_{i}}{z_{0}-\omega_{i}} . \tag{1}
\end{equation*}
$$

(Also, note that we assumed each $z-\omega_{i}$ is nonzero.)
After multiplying each fraction by $\overline{z_{0}}-\bar{\omega}_{i}$ and noting that $\omega_{i} \cdot \bar{\omega}_{i}=1$, we get

$$
0=\sum_{i=1}^{2 n} \frac{\left|z_{0}\right|^{2}-1+\left(\bar{z}_{0} \omega_{i}-z_{0} \bar{\omega}_{i}\right)}{\left|z_{0}-\omega_{i}\right|^{2}}
$$

But $\overline{z_{0}} \omega_{i}-z_{0} \bar{\omega}_{i}$ is always of the form $i \cdot y$ for some real number y (i.e., it's a purely imaginary number, it has no real part). So, then taking the real part of the right hand side of (1) yields

$$
0=\sum_{i=1}^{2 n} \frac{\left|z_{0}\right|^{2}-1}{\left|z_{0}-\omega_{i}\right|^{2}}=\left(\left|z_{0}\right|^{2}-1\right) \cdot \sum_{i=1}^{2 n} \frac{1}{\left|z_{0}-\omega_{i}\right|^{2}},
$$

which forces $\left|z_{0}\right|=1$ because the above sum from the right hand side is always positive.

Problem 3. Let A be an N-by- N matrix with the property that each one of its entries is equal to 1 or -1 and also satisfying that $A \cdot A^{t}=N \cdot \mathrm{id}_{N}\left(\right.$ where $^{\operatorname{id}}{ }_{N}$ is the N-by- N identity matrix). Assume there exists an a-by- b submatrix of A whose entries are all equal to 1 . Prove that $a b \leq N$.

Solution. We let v_{1}, \ldots, v_{a} be the a rows in the matrix A with the property that the a-by- b submatrix containing only the entries equal to 1 is part of the a-by- N submatrix of A formed by the rows v_{1}, \ldots, v_{a}. We let

$$
w:=\sum_{i=1}^{a} v_{i}
$$

and denote by $|w|^{2}=w \cdot w^{t}$ the length of this vector. We compute

$$
w \cdot w^{t}=\left(\sum_{i=1}^{a} v_{i}\right) \cdot\left(\sum_{j=1}^{a} v_{i}^{t}\right)=\sum_{1 \leq i, j \leq a} v_{i} \cdot v_{j}^{t}
$$

Finally, noting that $v_{i} \cdot v_{j}^{t}=0$ for $i \neq j$, while

$$
v_{i} \cdot v_{i}^{t}=N \text { for each } i=1, \ldots, a,
$$

we get $|w|^{2}=N \cdot a$. On the other hand, we know that the vector w contains b entries each one of them equal to a. Therefore,

$$
|w|^{2} \geq b \cdot a^{2}
$$

which combined with the fact that $|w|^{2}=N a$ yields the desired inequality $a b \leq N$.
Problem 4. Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

Solution. We make the substitution $x=\tan (t)$ and so, $\mathrm{dx}=\sec ^{2}(t) \cdot \mathrm{dt}$, while the bounds of integration change to $t=0$ and $t=\frac{\pi}{4}$ and so, our integral I equals now
$\int_{0}^{\frac{\pi}{4}} \frac{\ln (\tan (t)+1)}{\tan ^{2}(t)+1} \cdot \sec ^{2}(t) \mathrm{dt}=\int_{0}^{\frac{\pi}{4}} \ln (\tan (t)+1) \mathrm{dt}=\int_{0}^{\frac{\pi}{4}} \ln (\sin (t)+\cos (t))-\ln (\cos (t)) \mathrm{dt}$ Now, we use the identity
$\sin (t)+\cos (t)=\cos \left(\frac{\pi}{2}-t\right)+\cos (t)=2 \cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}-t\right)=\sqrt{2} \cdot \cos \left(\frac{\pi}{4}-t\right)$
and so, we get that our integral I equals
$\int_{0}^{\frac{\pi}{4}} \ln (\sqrt{2})+\ln \left(\cos \left(\frac{\pi}{4}-t\right)\right)-\cos (t) \mathrm{dt}=\frac{\pi}{4} \cdot \ln (\sqrt{2})+\int_{t=0}^{\frac{\pi}{4}} \ln \left(\cos \left(\frac{\pi}{4}-t\right)\right) \mathrm{dt}-\int_{t=0}^{\frac{\pi}{4}} \ln (\cos (t)) \mathrm{dt}$.
On the other hand, using the substitution $t=\frac{\pi}{4}-u$, we get that

$$
\int_{0}^{\frac{\pi}{4}} \ln \left(\cos \left(\frac{\pi}{4}-t\right)\right) d t=\int_{0}^{\frac{\pi}{4}} \ln (\cos (u)) d u
$$

and so, our integral I equals

$$
\frac{\pi}{4} \cdot \ln (\sqrt{2})=\frac{\pi \ln (2)}{8}
$$

