PUTNAM PRACTICE SET 33

PROF. DRAGOS GHIOCA

Problem 1. For which positive integers n is there an n-by- n matrix A with integer entries with the property that every dot product of a row with itself is even, while every dot product of two different rows is odd?

Problem 2. Let $a, b \in \mathbb{N}$. Prove that for each $\epsilon>0$, we can find positive integers m and n with the property that

$$
0<|a \sqrt{m}-b \sqrt{n}|<\epsilon .
$$

Problem 3. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function with $g(0) \neq 0$. If $f: \mathbb{R} \longrightarrow$ \mathbb{R} is a function with the property that both functions

$$
\frac{f}{g} \text { and } f \cdot g
$$

are differentiable at $x=0$, then does this imply that also f must be differentiable at $x=0$?

Problem 4. Let p be an odd prime number. Prove that there exist at least $\frac{p+1}{2}$ distinct integers $n \in\{0,1,2, \ldots, p-1\}$ with the property that p doesn't divide the integer:

$$
\sum_{k=0}^{p-1} k!\cdot n^{k} .
$$

(As always, we use the convention that $0!=1$.)

