PUTNAM PRACTICE SET 31

PROF. DRAGOS GHIOCA

Problem 1. Is there an infinite sequence of real numbers $\left\{a_{n}\right\}_{n \geq 1}$ such that

$$
\sum_{n=1}^{\infty} a_{n}^{m}=m
$$

for each $m \in \mathbb{N}$?
Problem 2. Given a positive integer n, what is the largest k such that the numbers $1,2, \ldots, n$ can be placed into k boxes with the sum of the integers in each box being the same across all boxes?

Problem 3. Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ for which

$$
f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}
$$

for each $x \in \mathbb{R}$ and for each $n \in \mathbb{N}$.
Problem 4. Let $a, b \in \mathbb{R}$ and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a function with continuous partial derivatives, which satisfies the following equation:

$$
f(x, y)=a \cdot \frac{\mathrm{df}}{\mathrm{dx}}(x, y)+b \cdot \frac{\mathrm{df}}{\mathrm{dy}}(x, y)
$$

for each $(x, y) \in \mathbb{R}^{2}$. Prove that if there exists a constant M such that

$$
|f(x, y)| \leq M \text { for each }(x, y) \in \mathbb{R}^{2},
$$

then f must be identically equal to 0 .

