PUTNAM PRACTICE SET 30

PROF. DRAGOS GHIOCA

Problem 1. Let $f:[0,1]^{2} \longrightarrow \mathbb{R}$ be a continuous function on the unit square such that the partial derivatives $\mathrm{df} / \mathrm{dx}$ and $\mathrm{df} / \mathrm{dy}$ exists and are continuous on the interior $(0,1)^{2}$. Prove or disprove whether there always exists some point $\left(x_{0}, y_{0}\right) \in$ $(0,1)^{2}$ such that:
$\frac{\mathrm{df}}{\mathrm{dx}}\left(x_{0}, y_{0}\right)=\int_{0}^{1} f(1, y) \mathrm{dy}-\int_{0}^{1} f(0, y) \mathrm{dy}$ and $\frac{\mathrm{df}}{\mathrm{dy}}\left(x_{0}, y_{0}\right)=\int_{0}^{1} f(x, 1) \mathrm{dx}-\int_{0}^{1} f(x, 0) \mathrm{dx}$
Problem 2. Show that every positive rational number can be written as a quotient of factorials of primes (not necessarily distinct); for example,

$$
\frac{6}{7}=\frac{3!\cdot 3!\cdot 5!}{7!}
$$

Problem 3. A game involves jumping to the right on the real number line. If a and b are real numbers and $b>a$, the cost of jumping from a to b is $b^{3}-a b^{2}$. For what real numbers c, can one travel from 0 to 1 in a finite number of jumps with total cost equal to c ?

Problem 4. Say that a polynomial $P \in \mathbb{R}[x, y]$ is balanced if the average value of the polynomial on each circle centered at the origin is 0 , i.e.,

$$
\int_{C} P(x, y)=0
$$

for any circle C in the cartesian plane. The balanced polynomials of degree 2021 form an \mathbb{R}-vector space V; find $\operatorname{dim}_{\mathbb{R}} V$.

