PUTNAM PRACTICE SET 29

PROF. DRAGOS GHIOCA

Problem 1. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a function with the property that whenever A, B, C and D are the vertices of a square in the cartesian plane, then $f(A)+f(B)+$ $f(C)+f(D)=0$. Find f.

Problem 2. Functions f, g and h are differentiable on the interval $I=(-1 / 10,1 / 10)$ and on this interval, they satisfy the following relations:

$$
\begin{aligned}
f^{\prime} & =2 f^{2} g h+\frac{1}{g h} \text { and } f(0)=1 \\
g^{\prime} & =f g^{2} h+\frac{4}{f h} \text { and } g(0)=1 \\
h^{\prime} & =3 f g h^{2}+\frac{1}{f g} \text { and } h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$ on the interval I.
Problem 3. Is there a finite abelian group G with the property that the product of the orders of its elements equals 2^{2021} ?

Problem 4. Let S be a set of rational numbers such that

- $0 \in S$;
- if $x \in S$, then $1+x \in S$ and also $x-1 \in S$; and
- if $x \in S \backslash\{0,1\}$, then $\frac{1}{x(x-1)} \in S$.

Must S contain all rational numbers?

