PUTNAM PRACTICE SET 28

PROF. DRAGOS GHIOCA

Problem 1. What is the maximum number of points in the cartesian plane whose both coordinates are rational numbers, which lie on the same circle whose center is not a point whose both coordinates are rational numbers?

Problem 2. Let $F_0(x) = \log(x)$ and for each $n \ge 1$ and x > 0, we let

$$F_n(x) = \int_0^x F_{n-1}(t) \mathrm{dt}$$

Compute

$$\lim_{n \to \infty} \frac{n! \cdot F_n(1)}{\ln(n)}$$

Problem 3. Let p be a prime number and let $f \in \mathbb{Z}[x]$. Assume that the integers f(k) for $0 \le k \le p^2 - 1$ are all distinct modulo p^2 . Then prove that for each $n \in \mathbb{N}$, the integers f(k) for $0 \le k \le p^n - 1$ are distinct modulo p^n .

Problem 4. Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ whose derivative is continuous with the property that for each rational number $\frac{a}{b}$, written in lowest terms (i.e., $a, b \in \mathbb{Z}$ with $b \in \mathbb{N}$ and gcd(a, b) = 1), we have that also $f\left(\frac{a}{b}\right)$ is a rational number whose denominator, when we write f(a/b) in lowest terms, is also equal to b.