PUTNAM PRACTICE SET 26

PROF. DRAGOS GHIOCA

Problem 1. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be the sequence given by

$$
a_{1}=1 \text { and } a_{n+1}=3 a_{n}+\left[\sqrt{5} \cdot a_{n}\right] \text { for } n \geq 1
$$

Compute a_{2021}.
Problem 2. Let $n \in \mathbb{N}$. Find the number of pairs of polynomials $(P(x), Q(x)) \in$ $\mathbb{R}[x] \times \mathbb{R}[x]$ satisfying the following two conditions:

- $\operatorname{deg}(P)>\operatorname{deg}(Q)$; and
- $P^{2}(x)+Q^{2}(x)=x^{2 n}+1$.

Problem 3. Let $k \in \mathbb{N}$. Prove that there exist polynomials $P_{0}, P_{1}, \ldots, P_{k-1}$ (which may depend on k) with the property that for each $n \in \mathbb{N}$, we have

$$
\left[\frac{n}{k}\right]^{k}=P_{0}(n)+P_{1}(n) \cdot\left[\frac{n}{k}\right]+P_{2}(n) \cdot\left[\frac{n}{k}\right]^{2}+\cdots+P_{k-1}(n) \cdot\left[\frac{n}{k}\right]^{k-1}
$$

where (as always) $[x]$ is the integer part of the real number x.
Problem 4. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ with the property that

$$
f(x, y)+f(y, z)+f(z, x)=0
$$

for all real numbers x, y and z. Prove that there must exist another function $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x, y)=g(x)-g(y)
$$

for all real numbers x and y.

