PUTNAM PRACTICE SET 26

PROF. DRAGOS GHIOCA

Problem 1. Let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence given by

$$a_1 = 1$$
 and $a_{n+1} = 3a_n + \left[\sqrt{5} \cdot a_n\right]$ for $n \ge 1$.

Compute a_{2021} .

Problem 2. Let $n \in \mathbb{N}$. Find the number of pairs of polynomials $(P(x), Q(x)) \in$ $\mathbb{R}[x] \times \mathbb{R}[x]$ satisfying the following two conditions:

- $\deg(P) > \deg(Q)$; and $P^2(x) + Q^2(x) = x^{2n} + 1$.

Problem 3. Let $k \in \mathbb{N}$. Prove that there exist polynomials $P_0, P_1, \ldots, P_{k-1}$ (which may depend on k) with the property that for each $n \in \mathbb{N}$, we have

$$\left[\frac{n}{k}\right]^{k} = P_0(n) + P_1(n) \cdot \left[\frac{n}{k}\right] + P_2(n) \cdot \left[\frac{n}{k}\right]^2 + \dots + P_{k-1}(n) \cdot \left[\frac{n}{k}\right]^{k-1}$$

where (as always) [x] is the integer part of the real number x.

Problem 4. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ with the property that

$$f(x, y) + f(y, z) + f(z, x) = 0,$$

for all real numbers x, y and z. Prove that there must exist another function $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$f(x,y) = g(x) - g(y),$$

for all real numbers x and y.