PUTNAM PRACTICE SET 25

PROF. DRAGOS GHIOCA

Problem 1. Let $n \in \mathbb{N}$ and let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Show that there exists an integer m and some nonempty subset $S \subseteq\{1, \ldots, n\}$ with the property that

$$
\left|m+\sum_{i \in S} a_{i}\right| \leq \frac{1}{n+1}
$$

Problem 2. For each continuous function $f:[0,1] \longrightarrow \mathbb{R}$, let

$$
I(f):=\int_{0}^{1} x^{2} f(x) \mathrm{dx}-\int_{0}^{1} x f(x)^{2} \mathrm{dx}
$$

Find the maximum of $I(f)$ over all possible continuous functions f.
Problem 3. Let c be a real number greater than 1 and let $g \in \mathbb{R}[x]$ be a nonconstant polynomial with the property that there exists an infinite sequence $\left\{k_{n}\right\} \subseteq$ \mathbb{N} with the property that for each $n \geq 1$, we have that there exists some $\ell_{n} \in \mathbb{N}$ with the property that

$$
g\left(c^{k_{n}}\right)=c^{\ell_{n}} .
$$

Find all such polynomials g.
Problem 4. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a function whose derivative is continuous, which also satisfies $\int_{0}^{1} f(x) \mathrm{dx}=0$. Prove that for each $\alpha \in(0,1)$ we have

$$
\left|\int_{0}^{\alpha} f(x) \mathrm{dx}\right| \leq \frac{1}{8} \cdot \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

