PUTNAM PRACTICE SET 24

PROF. DRAGOS GHIOCA

Problem 1. Find a polynomial $P(x, y) \in \mathbb{R}[x, y]$ with the property that for each real number r, we have

$$
P([r],[2 r])=0,
$$

where $[x]$ is always the integer part of the real number x (i.e., the largest integer less than or equal to x).

Problem 2. Show that the curve in the cartesian plane given by the equation:

$$
x^{3}+3 x y+y^{3}=1
$$

contains exactly one set of three points A, B and C which are the vertices of an equilateral triangle.

Problem 3. Let $\left\{a_{n}\right\}_{n \geq 0}$ be a sequence of integers satisfying the two properties: $a_{i}=i$ for $i=0,1, \ldots, 2020$ and $a_{n}=a_{n-1}+a_{n-2020}$ for $n \geq 2021$.
Show that for each positive integer M, there exists some integer $k>M+2020$ such that each one of the integers $a_{k}, \ldots, a_{k+2018}$ are divisible by M.

Problem 4. Let n be an odd positive integer and let $\theta \in \mathbb{R}$ such that θ / π is an irrational number. For each $k=1, \ldots, n$, we let

$$
a_{k}=\tan \left(\theta+\frac{k \pi}{n}\right)
$$

Compute $\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1} \cdot a_{2} \cdots \cdots a_{n}}$.

