PUTNAM PRACTICE SET 23

PROF. DRAGOS GHIOCA

Problem 1. Show that each positive integer can be written as a sum of integers of the form $2^{a} \cdot 3^{b}$ with the property that no interger from the chosen sum divides a different integer from the sum.

Problem 2. Let $n \in \mathbb{N}$ and let $P \in \mathbb{C}[z]$ be a polynomial of degree $2 n$, all of whose roots have absolute value equal to 1 . Let

$$
g(z):=\frac{P(z)}{z^{n}}
$$

Prove that each solution for $g^{\prime}(z)=0$ (where g^{\prime} is the derivative of g) has absolute value equal to 1 .

Problem 3. Let A be an N-by- N matrix with the property that each one of its entries is equal to 1 or -1 and also satisfying that $A \cdot A^{t}=N \cdot \mathrm{id}_{N}\left(\right.$ where $^{\operatorname{id}}{ }_{N}$ is the N-by- N identity matrix). Assume there exists an a-by- b submatrix of A whose entries are all equal to 1 . Prove that $a b \leq N$.

Problem 4. Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} \mathrm{dx}
$$

